A212362 Triangle by rows, binomial transform of the beheaded Pascal's triangle A074909.
1, 2, 2, 4, 7, 3, 8, 19, 15, 4, 16, 47, 52, 26, 5, 32, 111, 155, 110, 40, 6, 64, 255, 426, 385, 200, 57, 7, 128, 575, 1113, 1211, 805, 329, 77, 8, 256, 1279, 2808, 3556, 2856, 1498, 504, 100, 9, 512, 2815, 6903, 9948, 9324, 5922, 2562, 732, 126, 10
Offset: 0
Examples
First few rows of the triangle are: 1; 2, 2; 4, 7, 3; 8, 19, 15, 4 16, 47, 52, 26, 5; 32, 111, 155, 110, 40, 6; 64, 255, 426, 385, 200, 57, 7; 128, 575, 1113, 1211, 805, 329, 77, 8; 256, 1279, 2808, 3556, 2856, 1498, 504, 100, 9; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A074909:= func< n,k | k lt 0 or k gt n select 0 else Binomial(n+1, k) >; A212362:= func< n,k | (&+[ Binomial(n,j)*A074909(j, k) : j in [0..n]]) >; [A212362(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 05 2021
-
Maple
A212362 := proc(n,k) add( binomial(n,i)*A074909(i,k),i=0..n) ; end proc: # R. J. Mathar, Aug 03 2015
-
Mathematica
T[n_, k_]= 2^(n-k)*Binomial[n+1, k] + (2^(n-k) -1)*Binomial[n, k-1]; Table[T[n, k] , {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, Aug 05 2021 *)
-
Sage
def T(n, k): return 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 05 2021
Formula
Binomial transform of the beheaded Pascal's triangle (A074909) as a matrix. (The beheaded Pascal matrix deletes the rightmost border of 1's.)
From G. C. Greubel, Aug 05 2021: (Start)
T(n, k) = Sum_{j=0..n} binomial(n, j)*binomial(j+1, k) - binomial(n, k-1), with T(n, 0) = 2^n.
T(n, k) = 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1).
Sum_{k=0..n} T(n, k) = A027649(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106515(n). (End)
Extensions
a(22) corrected by G. C. Greubel, Aug 05 2021
Comments