A212376 Primes p such that x^48 = 2 has no solution mod p.
3, 5, 7, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 73, 79, 83, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 193, 197, 199, 211, 227, 229, 241, 251, 269, 271, 277, 281, 283, 293, 307, 313, 317, 331, 337, 347, 349, 353, 367
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(400) | forall{x: x in ResidueClassRing(p) | x^48 ne 2}];
-
Mathematica
Select[Prime[Range[PrimePi[400]]], ! MemberQ[PowerMod[Range[#], 48, #], Mod[2, #]] &] ok[p_] := Reduce[Mod[x^48 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[75]], ok] (* Vincenzo Librandi, Sep 21 2012 *)
-
PARI
N=10^4; default(primelimit,N); ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); } forprime(p=2,N, if (! ok(p,2,48),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */
Comments