A212424 Frobenius pseudoprimes with respect to Fibonacci polynomial x^2 - x - 1.
4181, 5777, 6721, 10877, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 75077, 90061, 96049, 97921, 100127, 113573, 118441, 146611, 161027, 162133, 163081, 186961, 197209, 219781, 231703, 252601, 254321, 257761, 268801, 272611
Offset: 1
Keywords
References
- R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (from Dana Jacobsen's site, terms 1..653 from Max Alekseyev)
- Dorin Andrica and Ovidiu Bagdasar, Recurrent Sequences: Key Results, Applications, and Problems, Springer (2020), p. 89.
- Jon Grantham, Frobenius pseudoprimes, Mathematics of Computation 70 (234): 873-891, 2001. doi: 10.1090/S0025-5718-00-01197-2.
- Dana Jacobsen, Pseudoprime Statistics, Tables, and Data (includes terms through 10^13)
- A. Rotkiewicz, Lucas and Frobenius Pseudoprimes, Annales Mathematicae Silesiane, 17 (2003): 17-39.
- Lawrence Somer, Lucas sequences {Uk} for which U2p and Up are pseudoprimes for almost all primes p, Fibonacci Quart. 44 (2006), no. 1, 7-12.
- Eric W. Weisstein, Frobenius Pseudoprime, MathWorld.
Crossrefs
Programs
-
PARI
{ isFP(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x)||(kronecker(5,n)==1 && t==x) }
-
Perl
use ntheory ":all"; foroddcomposites { say if is_frobenius_pseudoprime($,1,-1) } 1e10; # _Dana Jacobsen, Aug 05 2015
Comments