cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212427 a(n) = 17*n + A000217(n-1).

Original entry on oeis.org

0, 17, 35, 54, 74, 95, 117, 140, 164, 189, 215, 242, 270, 299, 329, 360, 392, 425, 459, 494, 530, 567, 605, 644, 684, 725, 767, 810, 854, 899, 945, 992, 1040, 1089, 1139, 1190, 1242, 1295, 1349, 1404, 1460, 1517, 1575, 1634, 1694, 1755, 1817, 1880, 1944, 2009
Offset: 0

Views

Author

Jesse Han, May 16 2012

Keywords

Comments

Generalization: T(n,i) = A000217(i-1+n) - A000217(i-1) = i*n + A000217(n-1); in this case is i=17. See also the comment in A212428.

Crossrefs

For n > 22, T(n,17) matches A074170 but with opposite sign.

Programs

  • Magma
    [n*(n+33)/2: n in [0..49]]; // Bruno Berselli, Jun 22 2012
    
  • Mathematica
    Table[-17 (17 - 1)/2 + (17 + n) (16 + n)/2, {n, 0, 100}]
  • PARI
    a(n)=n*(n+33)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (16+n)*(17+n)/2 - 16*17/2 = 17*n + (n-1)*n/2 = n*(n+33)/2.
G.f.: x*(17-16*x)/(1-x)^3. - Bruno Berselli, Jun 22 2012
a(n) = 17*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Amiram Eldar, Jan 11 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(33)/(33*A002805(33)) = 53676090078349/216605329340400.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/33 - 14606816124167/340379803249200. (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(34 + x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)