cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212551 Number of partitions T(n,k) of n containing at least one other part m-k if m is the largest part; triangle T(n,k), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 2, 3, 1, 1, 0, 0, 4, 3, 3, 1, 1, 0, 0, 4, 6, 4, 3, 1, 1, 0, 0, 7, 7, 7, 4, 3, 1, 1, 0, 0, 8, 11, 9, 8, 4, 3, 1, 1, 0, 0, 12, 13, 15, 10, 8, 4, 3, 1, 1, 0, 0, 14, 20, 18, 17, 11, 8, 4, 3, 1, 1, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, May 20 2012

Keywords

Comments

Reversed rows converge to A024786.

Examples

			T(4,0) = 2: [1,1,1,1], [2,2].
T(4,1) = 1: [2,1,1].
T(5,1) = 3: [2,1,1,1], [2,2,1], [3,2].
T(6,2) = 3: [3,1,1,1], [3,2,1], [4,2].
T(7,2) = 4: [3,1,1,1,1], [3,2,1,1], [3,3,1], [4,2,1].
T(8,4) = 3: [5,1,1,1], [5,2,1], [6,2].
Triangle T(n,k) begins:
1;
0, 0;
1, 0, 0;
1, 1, 0, 0;
2, 1, 1, 0, 0;
2, 3, 1, 1, 0, 0;
4, 3, 3, 1, 1, 0, 0;
4, 6, 4, 3, 1, 1, 0, 0;
7, 7, 7, 4, 3, 1, 1, 0, 0;
		

Crossrefs

Row sums give A000070(n-2) for n>1.
Cf. A024786.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
        end:
    T:= (n, k)-> `if`(n=0 and k=0, 1,
        add(b(n-2*m-k, min(n-2*m-k, m+k)), m=1..(n-k)/2)):
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i-1] + If[i > n, 0, b[n-i, i]]]; t[n_, k_] := If[n == 0 && k == 0, 1, Sum[b[n-2*m-k, Min[n-2*m-k, m+k]], {m, 1, (n-k)/2}]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

Formula

G.f. of column k: delta_{0,k} + Sum_{i>0} x^(2*i+k) / Product_{j=1..k+i} (1-x^j), where delta is the Kronecker delta.