cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212561 Number of (w,x,y,z) with all terms in {1,...,n} and w + x = 2y + 2z.

Original entry on oeis.org

0, 0, 1, 5, 12, 26, 45, 75, 112, 164, 225, 305, 396, 510, 637, 791, 960, 1160, 1377, 1629, 1900, 2210, 2541, 2915, 3312, 3756, 4225, 4745, 5292, 5894, 6525, 7215, 7936, 8720, 9537, 10421, 11340, 12330, 13357, 14459, 15600, 16820, 18081, 19425
Offset: 0

Views

Author

Clark Kimberling, May 21 2012

Keywords

Comments

Probably related to A199771 and A200252.
For a guide to related sequences, see A211795.
Except for the first term, a(n) is the number of undirected rook moves on an n X n chessboard, considered up to rotations but not reflections. - Hilko Koning, Aug 10 2025

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w + x == 2 y + 2 z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212561 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{0,0,1,5,12,26},50] (* Harvey P. Dale, Dec 04 2016 *)
    a[n_Integer?NonNegative] := ((n - 1) (2 n^2 + 1 - (-1)^n))/8
    Table[a[n], {n, 0, 100}] (* Hilko Koning, Aug 10 2025 *)
  • PARI
    concat([0,0], Vec(x^2*(x^3+x^2+3*x+1)/((x-1)^4*(x+1)^2) + O(x^100))) \\ Colin Barker, Feb 17 2015

Formula

a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
a(n) = (2*n^3-2*n^2+n-1-(n-1)*(-1)^n)/8 = (n-1)*(2*n^2+1-(-1)^n)/8. - Luce ETIENNE, Jul 26 2014
G.f.: x^2*(x^3+x^2+3*x+1) / ((x-1)^4*(x+1)^2). - Colin Barker, Feb 17 2015