A212569 Number of (w,x,y,z) with all terms in {0,...,n} such that range{w,x,y,z} is not one of the numbers w,x,y,z.
0, 1, 2, 31, 96, 321, 690, 1471, 2576, 4465, 6930, 10671, 15312, 21841, 29666, 40111, 52320, 68001, 85986, 108415, 133760, 164641, 199122, 240351, 285936, 339601, 398450, 466831, 541296, 626865, 719490, 824911, 938432, 1066561
Offset: 0
Links
- Todd Silvestri, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A211795.
Programs
-
Magma
[((n-1)*n*(2*n*(2*n-5)-3*(-1)^n+11)-2*(-1)^n+2)/4: n in [0..40]]; // Vincenzo Librandi, Nov 16 2014
-
Mathematica
t = Compile[{{n, Integer}}, Module[{s = 0}, (Do[If[(w != # && x != # && y != # && z != #) &[Max[w, x, y, z] - Min[w, x, y, z]], s++], {w, 0, n},{x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]]; Map[t[#] &, Range[0, 40]] (* _Peter J. C. Moses, May 24 2012 *) a[n_Integer/;n>=0]:=((n-1) n (2 n (2 n-5)-3 (-1)^n+11)-2 (-1)^n+2)/4 (* Todd Silvestri, Nov 16 2014 *) CoefficientList[Series[(- x - 25 x^3 - 36 x^4 - 79 x^5 - 36 x^6 - 15 x^7) / ((-1 + x)^5 (1 + x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 16 2014 *)
-
PARI
Vec((-x-25*x^3-36*x^4-79*x^5-36*x^6-15*x^7)/(((-1+x)^5)*(1+x)^3)+ O(x^50)) \\ Michel Marcus, Nov 16 2014
Formula
a(n) = n^4 - A212746(n).
a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8).
G.f.: f(x)/g(x), where f(x)=-x-25*x^3-36*x^4-79*x^5-36*x^6-15*x^7 and g(x)=((-1+x)^5)*(1+x)^3.
a(n) = ((n-1)*n*(2*n*(2*n-5)-3*(-1)^n+11)-2*(-1)^n+2)/4. - Todd Silvestri, Nov 16 2014
Comments