A212583 Primes p such that p^2 divides 6^(p-1) - 1.
66161, 534851, 3152573
Offset: 1
References
- P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996, page 347
Links
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table p. 5.
- François G. Dorais and Dominic Klyve, A Wieferich prime search up to p < 6.7*10^15, J. Integer Seq. 14 (2011), Art. 11.9.2, 1-14.
- Richard Fischer, Thema: Fermatquotient B^P-1 == 1 mod (P^2)
- Wilfrid Keller and Jörg Richstein, Fermat quotients q_p(a) that are divisible by p.
- Eric Weisstein, Fermat Quotient, MathWorld
- Wikipedia, Base-a Wieferich primes
Programs
-
Mathematica
Select[Prime[Range[1000000]], PowerMod[6, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
-
PARI
N=10^9; default(primelimit,N); forprime(n=2,N,if(Mod(6,n^2)^(n-1)==1,print1(n,", "))); \\ Joerg Arndt, May 01 2013
Comments