A212617 Least pentagonal number that is the product of n pentagonal numbers greater than 1.
5, 10045, 20475, 836640, 12397000, 1331330000, 143820000, 213051960000, 94724270640000, 3908675145375000, 104284286367187500, 43867845932728125000000, 12399293137277921875000
Offset: 1
Examples
Let pen(n) = n*(3*n-1)/2. Then a(1) = pen(2) = 5. a(2) = pen(82) = 10045 = 35 * 287 = pen(5) * pen(14). a(3) = pen(117) = 20475 = 5 * 35 * 117 = pen(2) * pen(5) * pen(9). a(4) = pen(747) = 836640 = 5 * 12 * 12 * 1162 = pen(2) * pen(3)^2 * pen(28). a(5) = pen(2875) = 12397000 = pen(2) * pen(4) * pen(5)^2 * pen(8). a(6) = pen(29792) = 1331330000 = pen(2)^2 * pen(5)^2 * pen(11) * pen(13). a(7) = pen(9792) = 143820000 = pen(2)^4 * pen(3) * pen(6) * pen(16). a(8) = pen(376875) = 213051960000 = pen(2)^4 * pen(3)^2 * pen(4) * pen(268). a(9) = pen(7946667) = 94724270640000 = pen(2)^3 * pen(3)^3 * pen(6) * pen(10) * pen(199). a(10)= pen(51046875) = 3908675145375000 = pen(2)^5 * pen(4) * pen(6) * pen(8) * pen(26) * pen(90). a(11)= pen(263671875) = 104284286367187500 = pen(2)^7 * pen(7)^2 * pen(30) * pen(369). - _Donovan Johnson_, Jun 14 2012
Links
- Lars Blomberg, Table of n, a(n) with solutions for n=1..13
Extensions
a(11) from Donovan Johnson, Jun 14 2012
a(12)-a(13) from Lars Blomberg, Sep 21 2013
Comments