cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A212616 Least triangular number that is the product of n triangular numbers greater than 1.

Original entry on oeis.org

3, 36, 300, 1485, 3240, 265356, 265356, 21520080, 21520080, 193720086, 1743362676, 141214502520, 141214502520, 11438393835996, 11438393835996, 926510072902560, 926510072902560, 75047317454789316, 75047317454789316, 6078832727785072200, 6078832727785072200
Offset: 1

Views

Author

T. D. Noe, Jun 11 2012

Keywords

Examples

			Contribution from _Donovan Johnson_, Jun 11 2012: (Start)
Let tri(n) = n*(n+1)/2. Then
a(1)  = 3 = tri(2).
a(2)  = 36 = tri(3)^2.
a(3)  = 300 = tri(2) * tri(4)^2.
a(4)  = 1485 = tri(2)^3 * tri(10).
a(5)  = 3240 = tri(2)^2 * tri(3)^2 * tri(4).
a(6)  = 265356 = tri(2)^4 * tri(8) * tri(13).
        265356 = tri(2)^3 * tri(3) * tri(6) * tri(12).
a(7)  = 265356 = tri(2)^4 * tri(3)^2 * tri(13).
a(8)  = 21520080 = tri(2)^6 * tri(8) * tri(40).
a(9)  = 21520080 = tri(2)^6 * tri(3)^2 * tri(40).
a(10) = 193720086 = tri(2)^7 * tri(3) * tri(6) * tri(37).
a(11) = 1743362676 = tri(2)^8  * tri(3)^2 * tri(121).
a(12) = 141214502520 = tri(2)^10 * tri(8) * tri(364).
        141214502520 = tri(2)^8 * tri(3) * tri(5) * tri(13) * tri(72).
a(13) = 141214502520 = tri(2)^10 * tri(3)^2 * tri(364).
        141214502520 = tri(2)^10 * tri(4) * tri(13) * tri(72).
a(14) = 11438393835996 = tri(2)^12 * tri(8) * tri(1093).
a(15) = 11438393835996 = tri(2)^12 * tri(3)^2 * tri(1093).
a(16) = 926510072902560 = tri(2)^14 * tri(8) * tri(3280).
a(17) = 926510072902560 = tri(2)^14 * tri(3)^2 * tri(3280).
a(18) = 75047317454789316 = tri(2)^16 * tri(8) * tri(9841).
a(19) = 75047317454789316 = tri(2)^16 * tri(3)^2 * tri(9841).
a(20) = 6078832727785072200 = tri(2)^18 * tri(8) * tri(29524).
a(21) = 6078832727785072200 = tri(2)^18 * tri(3)^2 * tri(29524). (End)
		

Crossrefs

Cf. A000217 (triangular numbers).
Cf. A212617, A225066-A225070 (5- to 10-gonal cases).

Extensions

Terms a(3) to a(21) by Donovan Johnson, Jun 11 2012

A212617 Least pentagonal number that is the product of n pentagonal numbers greater than 1.

Original entry on oeis.org

5, 10045, 20475, 836640, 12397000, 1331330000, 143820000, 213051960000, 94724270640000, 3908675145375000, 104284286367187500, 43867845932728125000000, 12399293137277921875000
Offset: 1

Views

Author

T. D. Noe, Jun 12 2012

Keywords

Comments

10^21 < a(12) <= pen(171012369792) = 43867845932728125000000 = pen(2)^9 * pen(32) * pen(132) * pen(19439). - Donovan Johnson, Jun 14 2012

Examples

			Let pen(n) = n*(3*n-1)/2. Then
a(1) = pen(2) = 5.
a(2) = pen(82) = 10045 = 35 * 287 = pen(5) * pen(14).
a(3) = pen(117) = 20475 = 5 * 35 * 117 = pen(2) * pen(5) * pen(9).
a(4) = pen(747) = 836640 = 5 * 12 * 12 * 1162
     = pen(2) * pen(3)^2 * pen(28).
a(5) = pen(2875) = 12397000 = pen(2) * pen(4) * pen(5)^2 * pen(8).
a(6) = pen(29792) = 1331330000 = pen(2)^2 * pen(5)^2 * pen(11) * pen(13).
a(7) = pen(9792) = 143820000 = pen(2)^4 * pen(3) * pen(6) * pen(16).
a(8) = pen(376875) = 213051960000
     = pen(2)^4 * pen(3)^2 * pen(4) * pen(268).
a(9) = pen(7946667) = 94724270640000
     = pen(2)^3 * pen(3)^3 * pen(6) * pen(10) * pen(199).
a(10)= pen(51046875) = 3908675145375000
     = pen(2)^5 * pen(4) * pen(6) * pen(8) * pen(26) * pen(90).
a(11)= pen(263671875) = 104284286367187500
     = pen(2)^7 * pen(7)^2 * pen(30) * pen(369). - _Donovan Johnson_, Jun 14 2012
		

Crossrefs

Cf. A000326 (pentagonal numbers).
Cf. A212616, A225066-A225070 (5- to 10-gonal cases).

Extensions

a(11) from Donovan Johnson, Jun 14 2012
a(12)-a(13) from Lars Blomberg, Sep 21 2013

A225070 Least decagonal (10-gonal) number that is the product of n decagonal numbers greater than 1.

Original entry on oeis.org

10, 69300, 9729720, 4257000, 967412160, 4104100000, 1408951239696000, 59860503846000000, 1542547619019487080000, 39054496014386012160000, 450510331438947780000000
Offset: 1

Views

Author

T. D. Noe, May 01 2013

Keywords

Examples

			Let dec(n) = n*(4n-3). Then
a(1) = 10 = dec(2).
a(2) = 69300 = dec(132) = dec(2) * dec(42).
a(3) = 9729720 = dec(1560) = dec(3) * dec(4) * dec(42).
a(4) = 4257000 = dec(1032) = dec(2)^3 * dec(33).
a(5) = 967412160 = dec(15552) = dec(2) * dec(3) * dec(4) * dec(8) * dec(9).
a(6) = 4104100000 = dec(32032) = dec(2)^3 * dec(4) * dec(7) * dec(11).
		

Crossrefs

Cf. A001107 (decagonal numbers).
Cf. A212616, A212617, A225066-A225069 (3-, 5- to 9-gonal cases).

Extensions

Corrected a(6) and added a(7)-a(11) by Lars Blomberg, Sep 20 2013

A225069 Least nonagonal (9-gonal) number that is the product of n nonagonal numbers greater than 1.

Original entry on oeis.org

9, 265926, 9909504, 28123200, 34171875, 9833523682950, 189619679700, 1489258878162739200, 32051313254079000000000, 231538926078057635957250, 5980078350588060426240000
Offset: 1

Views

Author

T. D. Noe, May 01 2013

Keywords

Examples

			Let non(n) = n*(7n-5)/2. Then
a(1) = 9 = non(2).
a(2) = 265926 = non(276) = non(4) * non(41).
a(3) = 9909504 = non(1683) = non(3) * non(4) * non(51).
a(4) = 28123200 = non(2835) = non(3)^2 * non(5) * non(14).
a(5) = 34171875 = non(3125) = non(2)^2 * non(5)^3.
a(6) = 9833523682950 = non(1676180) = non(2)^3 * non(6) * non(55) * non(58).
		

Crossrefs

Cf. A001106 (9-gonal or nonagonal numbers).
Cf. A212616, A212617, A225066-A225070 (3-, 5- to 10-gonal cases).

Extensions

Corrected a(4)-a(6) and added a(7)-a(11) by Lars Blomberg, Sep 21 2013

A225067 Least heptagonal (7-gonal) number that is the product of n heptagonal numbers greater than 1.

Original entry on oeis.org

7, 6426, 35224, 2077992, 3610893055, 14209771072, 118896888880, 6400213601782, 22535310978496008, 22535310978496008, 2418562185097611420000, 2462278542548750181849600
Offset: 1

Views

Author

T. D. Noe, May 01 2013

Keywords

Examples

			Let hep(n) = n*(5n-3)/2. Then
a(1) = 7 = hep(2).
a(2) = 6426 = hep(51) = hep(4) * hep(9).
a(3) = 35224 = hep(119) = hep(2) * hep(4) * hep(8).
a(4) = 2077992 = hep(912) = hep(2)^2 * hep(3) * hep(31).
a(5) = 3610893055 = hep(38005) = hep(2)^3 * hep(5) * hep(277).
a(6) = 14209771072 = hep(75392) = hep(2)^4 * hep(31) * hep(32).
		

Crossrefs

Cf. A000566 (heptagonal numbers).
Cf. A212616, A212617, A225066-A225070 (3-, 5- to 10-gonal cases).

Extensions

Corrected a(6) and added a(7)-a(12) by Lars Blomberg, Sep 21 2013

A225068 Least octagonal (8-gonal) number that is the product of n octagonal numbers greater than 1.

Original entry on oeis.org

8, 1408, 2165800, 37333296, 19384601600, 69370076160, 69370076160, 56288711711232000, 7917914554368000000, 199449790781142859776
Offset: 1

Views

Author

T. D. Noe, May 01 2013

Keywords

Examples

			Let oct(n) = n*(3n-2). Then
a(1) = 8 = oct(2).
a(2) = 1408 = oct(22) = oct(2) * oct(8).
a(3) = 2165800 = oct(850) = oct(4) * oct(5) * oct(17).
a(4) = 37333296 = oct(3528) = oct(3)^2 * oct(8) * oct(13).
a(5) = 19384601600 = oct(80384) = oct(2)^2 * oct(5) * oct(14) * oct(53).
a(6) = 69370076160 = oct(152064) = oct(3)^3 * oct(4) * oct(7) * oct(22).
		

Crossrefs

Cf. A000567 (octagonal numbers).
Cf. A212616, A212617, A225066-A225070 (3-, 5- to 10-gonal cases).

Extensions

Corrected a(4) and added a(7)-a(10) by Lars Blomberg, Sep 21 2013
Showing 1-6 of 6 results.