A212634 Triangle read by rows: T(n,k) is the number of dominating subsets with cardinality k of the cycle C_n (n >= 1, 1 <= k <= n).
1, 2, 1, 3, 3, 1, 0, 6, 4, 1, 0, 5, 10, 5, 1, 0, 3, 14, 15, 6, 1, 0, 0, 14, 28, 21, 7, 1, 0, 0, 8, 38, 48, 28, 8, 1, 0, 0, 3, 36, 81, 75, 36, 9, 1, 0, 0, 0, 25, 102, 150, 110, 45, 10, 1, 0, 0, 0, 11, 99, 231, 253, 154, 55, 11, 1
Offset: 1
Examples
Row 4 is [0,6,4,1] because the cycle A-B-C-D-A has dominating subsets AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, and ABCD. Triangle starts: 1; 2, 1; 3, 3, 1; 0, 6, 4, 1; 0, 5, 10, 5, 1; 0, 3, 14, 15, 6, 1; ... From _Petros Hadjicostas_, Jan 27 2019: (Start) Let n=6 and 1 <= k <= 6. Then T(n, k) is the number of (n-k)-combinations of the integers 1, 2, 3, 4, 5, 6 displaced on a circle with no K=3 consecutive integers (assuming 6 and 1 are consecutive). Equivalently, T(n, k) is the number of marked cyclic sequences consisting of n-k ones and k zeros with no K=3 consecutive ones. For each k below we give the corresponding (n-k)-combinations and the equivalent marked sequences of 0's and 1's. k=1, n-k = 5: none; T(n=6, k=1) = 0. k=2, n-k = 4: 1245 <-> 110110, 2356 <-> 011011, 1346 <-> 101101; T(n=6, k=2) = 3. k=3, n-k = 3: 124 <-> 110100, 125 <-> 110010, 134 <-> 101100, 135 <-> 101010, 136 <-> 101001, 145 <-> 100110, 146 <-> 100101, 235 <-> 011010, 236 <-> 011001, 245 <-> 010110, 246 <-> 010101, 256 <-> 010011, 346 <-> 001101, 356 <-> 001011; T(n=6, k=3) = 14. k=4, n-k=2: all 2-combinations of the integers 1,2,3,4,5,6 and all marked cyclic sequences with exactly 2 ones and 4 zeros; hence, T(n=6, k=4) = binomial(6, 2) = 15. k=5, n-k=1: all 1-combinations of the integers 1,2,3,4,5,6 and all marked cyclic sequences with exactly 1 one and 5 zeros; hence, T(n=6, k=5) = binomial(6, 1) = 6. k=6, n-k=0: empty combination <-> 000000; T(n=6, k=6) = 1. (End)
Links
- S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
- S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of paths, International J. Math. and Math. Sci., Vol. 2009, Article ID542040.
- S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of certain graphs, II, Opuscula Math., 30, No. 1, 2010, 37-51.
- J. L. Arocha, B. Llano, The number of dominating k-sets of paths, cycles and wheels, arXiv preprint arXiv:1601.01268 [math.CO], 2016.
- C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.
- W. O. J. Moser and M. Abramson, Enumeration of combinations with restricted differences and cospan, J. Combin. Theory, 7 (1969), 162-170.
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Domination Polynomial
Crossrefs
Programs
-
Maple
p := proc (n) if n = 1 then x elif n = 2 then x^2+2*x elif n = 3 then x^3+3*x^2+3*x else sort(expand(x*(p(n-1)+p(n-2)+p(n-3)))) end if end proc: for n to 15 do seq(coeff(p(n), x, k), k = 1 .. n) end do; # yields sequence in triangular form
-
Mathematica
CoefficientList[LinearRecurrence[{x, x, x}, {1, 2 + x, 3 + 3 x + x^2}, 10], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
Formula
If p(n)=p(n,x) denotes the generating polynomial of row n (called the domination polynomial of the cycle C_n), then p(1)=x, p(2) = 2x + x^2 , p(3) = 3x + 3x^2 + x^3 and p(n) = x*[p(n-1) + p(n-2) + p(n-3)] for n >= 4 (see Theorem 4.5 in the Alikhani & Peng reference in Opuscula Math.).
From Petros Hadjicostas, Jan 26 2019: (Start)
T(n, k) = binomial(n, k) for 1 <= k <= n and n = 1, 2.
T(n, k) = Sum_{j=0..floor(n/3)-1} (-1)^j*binomial(k, j)*(n/(n - 3*j))*binomial(n - 3*j, k) for n - floor(2*n/3) <= k <= n and n >= 3. (This is a special case of a corrected version of formula (2.1) in Charalambides (1991) and equation (14) in Moser and Abramson (1969).)
T(n, k) = 0 for 1 <= k < n - floor(2*n/3) and n >= 4. (Thus, the number of initial zeros in row n is n - floor(2*n/3) - 1.)
G.f. for row n: p(n, x) = -1 + Sum_{j=0..floor(n/4)} (-1)^j*(n/(n-3*j))*binomial(n - 3*j, j)*x^j*(1+x)^(n-4*j). It satisfies the recurrence given above (found in Alikhani and Peng (2010) and Charalambides (1991)).
(End)
Comments