cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212634 Triangle read by rows: T(n,k) is the number of dominating subsets with cardinality k of the cycle C_n (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 0, 6, 4, 1, 0, 5, 10, 5, 1, 0, 3, 14, 15, 6, 1, 0, 0, 14, 28, 21, 7, 1, 0, 0, 8, 38, 48, 28, 8, 1, 0, 0, 3, 36, 81, 75, 36, 9, 1, 0, 0, 0, 25, 102, 150, 110, 45, 10, 1, 0, 0, 0, 11, 99, 231, 253, 154, 55, 11, 1
Offset: 1

Views

Author

Emeric Deutsch, Jun 14 2012

Keywords

Comments

The entries in row n are the coefficients of the domination polynomial of the cycle C_n (see the Alikhani and Peng reference in Opuscula Math).
Sum of entries in row n = A001644(n) (number of dominating subsets; tribonacci numbers with initial values 1,3,7).
From Petros Hadjicostas, Jan 26 2019: (Start)
Let L(n, r, K) be the number of r-combinations of the n consecutive integers 1, 2, ..., n displaced on a circle, with no K integers consecutive (assuming that n and 1 are consecutive integers).
If on the circle where the n integers 1, 2, ..., n are displaced we put 1 for any integer that is included in the r-combination and 0 otherwise, we get a marked cyclic sequence of r ones and n-r zeros with no K consecutive ones.
Let L_{n,K}(x) = Sum_{r=0..floor(n-(n/K))} L(n, r, K)*x^(n-r) for n, K >= 1. Charalambides (1991) proved that L_{n,K}(x) = x*(n + Sum_{j=1..n-1} L_{n-j, K}(x)) for K >= 1 and 1 <= n <= K, and L_{n,K}(x) = x*Sum_{j=1..K} L_{n-j, K}(x) for K >= 1 and n >= K + 1. See Theorem 2.1 (p. 291) in his paper.
He also proved that L_{n,K}(x) = -1 + Sum_{j=0..floor(n/(K + 1))} (-1)^j*(n/(n-j*K))*binomial(n - j*K, j)*x^j*(1+x)^(n-j*(K+1)). See Theorem 2.3 (p. 293) in his paper.
He also produced other formulas for L(n, r, K) and L_{n,K}(x) including the explicit formulas of Moser and Abramson (1969) (regarding L(n, r, K)).
For the current sequence, we have T(n, k) = L(n, r = n-k, K = 3) for 1 <= n <= k. In other words, T(n, n-k) is the number of k-combinations of the n consecutive integers 1, 2, ..., n displaced on a circle, with no K = 3 consecutive integers (assuming n and 1 are consecutive).
(End)

Examples

			Row 4 is [0,6,4,1] because the cycle A-B-C-D-A has dominating subsets AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, and ABCD.
Triangle starts:
1;
2, 1;
3, 3,  1;
0, 6,  4,  1;
0, 5, 10,  5, 1;
0, 3, 14, 15, 6, 1;
...
From _Petros Hadjicostas_, Jan 27 2019: (Start)
Let n=6 and 1 <= k <= 6. Then T(n, k) is the number of (n-k)-combinations of the integers 1, 2, 3, 4, 5, 6 displaced on a circle with no K=3 consecutive integers (assuming 6 and 1 are consecutive). Equivalently, T(n, k) is the number of marked cyclic sequences consisting of n-k ones and k zeros with no K=3 consecutive ones.
For each k below we give the corresponding (n-k)-combinations and the equivalent marked sequences of 0's and 1's.
k=1, n-k = 5: none; T(n=6, k=1) = 0.
k=2, n-k = 4: 1245 <-> 110110, 2356 <-> 011011, 1346 <-> 101101; T(n=6, k=2) = 3.
k=3, n-k = 3: 124 <-> 110100, 125 <-> 110010, 134 <-> 101100, 135 <-> 101010, 136 <-> 101001, 145 <-> 100110, 146 <-> 100101, 235 <-> 011010, 236 <-> 011001, 245 <-> 010110, 246 <-> 010101, 256 <-> 010011, 346 <-> 001101, 356 <-> 001011; T(n=6, k=3) = 14.
k=4, n-k=2: all 2-combinations of the integers 1,2,3,4,5,6 and all marked cyclic sequences with exactly 2 ones and 4 zeros; hence, T(n=6, k=4) = binomial(6, 2) = 15.
k=5, n-k=1: all 1-combinations of the integers 1,2,3,4,5,6 and all marked cyclic sequences with exactly 1 one and 5 zeros; hence, T(n=6, k=5) = binomial(6, 1) = 6.
k=6, n-k=0: empty combination <-> 000000; T(n=6, k=6) = 1.
(End)
		

Crossrefs

Cf. A212635 (corresponding sequence for wheel graphs). - Eric W. Weisstein, Apr 06 2017

Programs

  • Maple
    p := proc (n) if n = 1 then x elif n = 2 then x^2+2*x elif n = 3 then x^3+3*x^2+3*x else sort(expand(x*(p(n-1)+p(n-2)+p(n-3)))) end if end proc: for n to 15 do seq(coeff(p(n), x, k), k = 1 .. n) end do; # yields sequence in triangular form
  • Mathematica
    CoefficientList[LinearRecurrence[{x, x, x}, {1, 2 + x, 3 + 3 x + x^2}, 10], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)

Formula

If p(n)=p(n,x) denotes the generating polynomial of row n (called the domination polynomial of the cycle C_n), then p(1)=x, p(2) = 2x + x^2 , p(3) = 3x + 3x^2 + x^3 and p(n) = x*[p(n-1) + p(n-2) + p(n-3)] for n >= 4 (see Theorem 4.5 in the Alikhani & Peng reference in Opuscula Math.).
From Petros Hadjicostas, Jan 26 2019: (Start)
T(n, k) = binomial(n, k) for 1 <= k <= n and n = 1, 2.
T(n, k) = Sum_{j=0..floor(n/3)-1} (-1)^j*binomial(k, j)*(n/(n - 3*j))*binomial(n - 3*j, k) for n - floor(2*n/3) <= k <= n and n >= 3. (This is a special case of a corrected version of formula (2.1) in Charalambides (1991) and equation (14) in Moser and Abramson (1969).)
T(n, k) = 0 for 1 <= k < n - floor(2*n/3) and n >= 4. (Thus, the number of initial zeros in row n is n - floor(2*n/3) - 1.)
G.f. for row n: p(n, x) = -1 + Sum_{j=0..floor(n/4)} (-1)^j*(n/(n-3*j))*binomial(n - 3*j, j)*x^j*(1+x)^(n-4*j). It satisfies the recurrence given above (found in Alikhani and Peng (2010) and Charalambides (1991)).
(End)