cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212696 Central coefficient of the triangle A097609.

Original entry on oeis.org

1, 0, 3, 4, 25, 66, 287, 960, 3789, 13810, 53240, 200652, 771641, 2952054, 11386065, 43910288, 170007429, 658979586, 2560258550, 9960335060, 38811668868, 151418146704, 591464244882, 2312774560296, 9052560751725, 35464735083726, 139054217427702, 545635715465596
Offset: 0

Views

Author

Vladimir Kruchinin, May 24 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((n + 1) Sum[Binomial[n + 2 j, n + j] (-1)^(n - j) Binomial[2 n + 1, n + j + 1], {j, 0, n}])/(2 n + 1), {n, 0, 27}] (* or *)
    CoefficientList[Series[(12 - 4/#)/(8 Sqrt[12 x + 2 # + 2]) + 1/(2 #) &@ Sqrt[1 - 4 x], {x, 0, 27}], x] (* Michael De Vlieger, Oct 08 2016 *)
    a[n_] := (-1)^n Binomial[2n, n] HypergeometricPFQ[{(n+1)/2, 1+n/2, -n}, {1+n, 2+n}, 4]; Table[a[n], {n, 0, 27}] (* Peter Luschny, Dec 26 2017 *)
  • PARI
    x='x+O('x^66);
    gf=(12-4/sqrt(1-4*x))/(8*sqrt(12*x+2*sqrt(1-4*x)+2))+1/(2*sqrt(1-4*x));
    Vec(Ser(gf))
    /* Joerg Arndt, Jun 09 2012 */

Formula

G.f.: (12-4/sqrt(1-4*x))/(8*sqrt(12*x+2*sqrt(1-4*x)+2))+1/(2*sqrt(1-4*x)).
a(n) = ((n+1)*Sum_{j=0..n} C(n+2*j, n+j)*(-1)^(n-j)*C(2*n+1, n+j+1)) / (2*n+1).
a(n) = (n+1)*A055113(n).
Conjecture: 2*n*(n-1)*(2*n+1)*(5*n-8)*a(n) -(n-1)*(115*n^3-344*n^2+299*n-82) *a(n-1) -4*(2*n-3)*(5*n^3+27*n^2-74*n+30)*a(n-2) +36*(n-1)*(5*n-3)*(2*n-3)*(2*n-5) *a(n-3)=0. - R. J. Mathar, Oct 08 2016
a(n) = (-1)^n*binomial(2*n, n)*hypergeom([(n+1)/2, 1+n/2, -n], [1+n, 2+n], 4). - Peter Luschny, Dec 26 2017
From Emanuele Munarini, Jul 14 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k)*binomial(n-k-1,k-1)*(n+1)/(2*n-k+1).
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n,k)*binomial(3n-2k,2*n-k)*(n+1)/(2*n-k+1).
a(n) = (n+1)/(2n+1)*Sum_{k=0..n} binomial(2*n+i,2*n)*trinomial(2*n+1,n-k)*(-1)^{n-k}, where trinomial(n,k) are the trinomial coefficients (A027907).
a(n) = Sum_{k=0..n} (-1)^k*binomial(3*n-k,n-k)*trinomial(2*n,k)*(n+k+1)/(2*n+1). (End)