cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212700 a(n) = 5*n*6^(n-1).

Original entry on oeis.org

5, 60, 540, 4320, 32400, 233280, 1632960, 11197440, 75582720, 503884800, 3325639680, 21767823360, 141490851840, 914248581120, 5877312307200, 37614798766080, 239794342133760, 1523399350026240, 9648195883499520, 60935974001049600, 383896636206612480, 2413064570441564160
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Main transitions in systems of n particles with spin 5/2.
Refer to the general explanation in A212697.
This particular sequence is obtained for base b=6, corresponding to spin S=(b-1)/2=5/2.
Arithmetic derivative of 6^n: a(n) = A003415(6^n). - Bruno Berselli, Oct 22 2013

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212701, A212702, A212703, A212704 (b = 2, 3, 4, 5, 7, 8, 9, 10).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[5 x/(6 x - 1)^2, {x, 0, 18}], x] (* or *)
    Array[5 # 6^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212700.txt", n, " ", mtrans(n, 6)))

Formula

a(n) = n*(b-1)*b^(n-1): for this sequence, set b=6.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 5*x/(6*x-1)^2.
a(n) = 5*A053469(n). (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 5*x*exp(6*x).
a(n) = A008587(n)*A000400(n-1).
a(n) = 12*a(n-1) - 36*a(n-2) for n > 2. (End)