A212703 Main transitions in systems of n particles with spin 4.
8, 144, 1944, 23328, 262440, 2834352, 29760696, 306110016, 3099363912, 30993639120, 306837027288, 3012581722464, 29372671794024, 284688972772848, 2745215094595320, 26354064908115072, 252010745683850376, 2401514164751985936, 22814384565143866392, 216136274827678734240
Offset: 1
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (18,-81).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{18,-81},{8,144},30] (* Harvey P. Dale, Jun 28 2017 *)
-
PARI
mtrans(n, b) = n*(b-1)*b^(n-1); for (n=1, 100, write("b212703.txt", n, " ", mtrans(n, 9)))
-
PARI
Vec(8*x/(9*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
-
PARI
a(n)=8*n*9^(n-1) \\ Charles R Greathouse IV, Jun 16 2015
Formula
a(n) = n*(b-1)*b^(n-1). For this sequence, set b=9.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 18*a(n-1) - 81*a(n-2) for n > 2.
G.f.: 8*x/(9*x-1)^2. (End)
From Elmo R. Oliveira, May 13 2025: (Start)
E.g.f.: 8*x*exp(9*x).
Comments