cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212817 Theta series of direct sum of 2 copies of 4-dimensional lattice QQF.4.i.

Original entry on oeis.org

1, 8, 56, 168, 536, 624, 2328, 1600, 4184, 4872, 7824, 6432, 19320, 10672, 21568, 22320, 33752, 23184, 62904, 32992, 66000, 61248, 83040, 58944, 155832, 75320, 136912, 130728, 179776, 117168, 291024, 142720, 269528, 236448, 307440, 207744, 528024, 243952
Offset: 0

Views

Author

Michael Somos, May 27 2012

Keywords

Examples

			G.f. = 1 + 8*x + 56*x^2 + 168*x^3 + 536*x^4 + 624*x^5 + 2328*x^6 + 1600*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 4), 38); A[1] + 8*A[2] + 56*A[3] + 168*A[4] + 536*A[5]; /* Michael Somos, Jun 04 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ With[{e1 = QPochhammer[ x] QPochhammer[ x^6], e2 = QPochhammer[ x^2] QPochhammer[ x^3]}, (e2^7 / e1^5 - x e1^7 / e2^5)^2 ], {x, 0, n}]; (* Michael Somos, Apr 19 2015 *)
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^3 + A); A = eta(x + A) * eta(x^6 + A); polcoeff( (B^7 / A^5 - x * A^7 / B^5)^2, n))};
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [ 2, 0, 1, 1; 0, 2, 1, 1; 1, 1, 4, 1; 1, 1, 1, 4 ]; polcoeff( (1 + 2 * x * Ser( qfrep( G, n, 1)))^2, n))};
    

Formula

Expansion of ((eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 - (eta(q) * eta(q^6))^7 / (eta(q^2) * eta(q^3))^5)^2 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 576 (t/i)^4 f(t) where q = exp(2 Pi i t).
Convolution square of A125514.
a(n) = A028977(n) + 8 * A030209(n). - Michael Somos, Jun 05 2015