A212817 Theta series of direct sum of 2 copies of 4-dimensional lattice QQF.4.i.
1, 8, 56, 168, 536, 624, 2328, 1600, 4184, 4872, 7824, 6432, 19320, 10672, 21568, 22320, 33752, 23184, 62904, 32992, 66000, 61248, 83040, 58944, 155832, 75320, 136912, 130728, 179776, 117168, 291024, 142720, 269528, 236448, 307440, 207744, 528024, 243952
Offset: 0
Keywords
Examples
G.f. = 1 + 8*x + 56*x^2 + 168*x^3 + 536*x^4 + 624*x^5 + 2328*x^6 + 1600*x^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
A := Basis( ModularForms( Gamma0(6), 4), 38); A[1] + 8*A[2] + 56*A[3] + 168*A[4] + 536*A[5]; /* Michael Somos, Jun 04 2015 */
-
Mathematica
a[ n_] := SeriesCoefficient[ With[{e1 = QPochhammer[ x] QPochhammer[ x^6], e2 = QPochhammer[ x^2] QPochhammer[ x^3]}, (e2^7 / e1^5 - x e1^7 / e2^5)^2 ], {x, 0, n}]; (* Michael Somos, Apr 19 2015 *)
-
PARI
{a(n) = my(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^3 + A); A = eta(x + A) * eta(x^6 + A); polcoeff( (B^7 / A^5 - x * A^7 / B^5)^2, n))};
-
PARI
{a(n) = my(G); if( n<0, 0, G = [ 2, 0, 1, 1; 0, 2, 1, 1; 1, 1, 4, 1; 1, 1, 1, 4 ]; polcoeff( (1 + 2 * x * Ser( qfrep( G, n, 1)))^2, n))};
Formula
Expansion of ((eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 - (eta(q) * eta(q^6))^7 / (eta(q^2) * eta(q^3))^5)^2 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 576 (t/i)^4 f(t) where q = exp(2 Pi i t).
Convolution square of A125514.