A212851 Number of n X 4 arrays with rows being permutations of 0..3 and no column j greater than column j-1 in all rows.
1, 211, 8983, 271375, 7225951, 182199871, 4479288703, 108787179775, 2626338801151, 63217691436031, 1519452489242623, 36493601345048575, 876167372044132351, 21031868446675976191, 504811062363654815743, 12116020140998121291775, 290791139166323355287551
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..3..0..2....3..1..2..0....1..2..0..3....1..2..0..3....1..2..0..3 ..2..1..0..3....3..1..0..2....0..1..3..2....3..0..2..1....2..1..3..0 ..2..3..1..0....1..2..0..3....3..2..0..1....1..2..0..3....1..3..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) on p. 248 (set t:=0).
Programs
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]]; a[n_] := T[n, 4]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
Formula
Empirical: a(n) = 47*a(n-1) - 718*a(n-2) + 4416*a(n-3) - 10656*a(n-4) + 6912*a(n-5).
Empirical: a(n) = 24^n + 6^n - 3*12^n + 2*4^n - 1. R. J. Mathar, Jun 25 2012
Empirical g.f.: x*(1 + 164*x - 216*x^2 - 3744*x^3) / ((1 - x)*(1 - 4*x)*(1 - 6*x)*(1 - 12*x)*(1 - 24*x)). - Colin Barker, Jul 21 2018
Comments