A212853 Number of n X 6 arrays with rows being permutations of 0..5 and no column j greater than column j-1 in all rows.
1, 90921, 179781181, 191740223841, 164481310134301, 128645361626874561, 96426023622482278621, 70816637331790329140481, 51492108377805402906874141, 37256471170472317193421713601, 26890352949868734582700237312861
Offset: 1
Keywords
Examples
Some solutions for n=3: 0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5 0 3 1 4 2 5 3 0 2 4 5 1 1 3 0 4 5 2 4 0 3 1 2 5 0 1 5 2 3 4 1 2 4 0 3 5 5 0 4 2 3 1 2 1 5 4 3 0 3 1 5 0 4 2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.
- Wikipedia, Partition (number theory).
- Wikipedia, Multinomial theorem.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]]; a[n_] := T[n, 6]; Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
Formula
Empirical: a(n) = 1602*a(n-1) - 929171*a(n-2) + 260888070*a(n-3) - 39883405500*a(n-4) + 3492052425000*a(n-5) - 177328940580000*a(n-6) + 5153150631600000*a(n-7) - 82577533320000000*a(n-8) + 669410956800000000*a(n-9) - 2224399449600000000*a(n-10) + 1632586752000000000*a(n-11) for n >= 12. [It is correct; see the comments above.]
a(n) = -1 + 2*6^n + 2*15^n + 20^n - 3*30^n - 6*60^n - 90^n + 4*120^n + 6*180^n - 5*360^n + 720^n for n >= 1. - Petros Hadjicostas, Sep 08 2019
Comments