A212862 Numbers k such that the sum of prime factors of k (counted with multiplicity) equals four times the largest prime divisor of k.
16, 72, 81, 625, 750, 800, 900, 960, 1080, 1215, 2401, 3430, 4116, 4900, 5880, 6272, 6615, 7000, 7056, 7875, 7938, 8400, 8960, 9450, 10080, 10752, 11340, 12096, 13608, 14641, 15309, 28561, 37268, 48334, 53240, 59895, 63888, 71874, 81796, 83521, 88935, 94864
Offset: 1
Keywords
Examples
750 is in the sequence because 750 = 2*3*5^3 => sum of prime divisors = 2+3 + 5*3 = 20 = 4*5 where 5 is the greatest prime divisor.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):A:= proc(n) local e, j; e := ifactors(n)[2]: add (e[j][1]*e[j][2], j=1..nops(e)) end: for m from 2 to 100000 do: x:=factorset(m):n1:=nops(x):if A(m)=4*x[n1] then printf(`%d, `,m):else fi:od:
-
Mathematica
Select[Range[2, 10^5], Plus @@ Times @@@ (f = FactorInteger[#]) == 4 * f[[-1, 1]] &] (* Amiram Eldar, Apr 24 2020 *)
Comments