A212863 Numbers k such that the sum of prime factors of k (counted with multiplicity) equals five times the largest prime divisor of k.
32, 192, 216, 243, 3125, 3750, 4000, 4500, 4800, 5120, 5400, 5760, 6075, 6480, 7290, 16807, 24010, 28812, 34300, 41160, 43904, 46305, 49000, 49392, 55125, 55566, 58800, 62720, 65625, 66150, 70000, 70560, 75264, 78750, 79380, 84000, 84672, 89600, 94500, 95256
Offset: 1
Examples
192 is in the sequence because 192 = 2^6 * 3 => sum of prime divisors = 2*6 + 3 = 15 = 5*3 where 3 is the greatest prime divisor.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 200 terms from Robert Israel. Following 4800 terms from Amiram Eldar)
- David A. Corneth, PARI program
- David A. Corneth, Terms <= 10^12
Programs
-
Maple
with(numtheory):A:= proc(n) local e, j; e := ifactors(n)[2]: add (e[j][1]*e[j][2], j=1..nops(e)) end: for m from 2 to 500000 do: x:=factorset(m):n1:=nops(x):if A(m)=5*x[n1] then printf(`%d, `,m):else fi:od:
-
Mathematica
Select[Range[2, 10^5], Plus @@ Times @@@ (f = FactorInteger[#]) == 5 * f[[-1, 1]] &] (* Amiram Eldar, Apr 24 2020 *)
-
PARI
\\ See Corneth link. David A. Corneth, Apr 24 2020
Comments