cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A088714 G.f. satisfies A(x) = 1 + x*A(x)^2*A(x*A(x)).

Original entry on oeis.org

1, 1, 3, 13, 69, 419, 2809, 20353, 157199, 1281993, 10963825, 97828031, 907177801, 8716049417, 86553001779, 886573220093, 9351927111901, 101447092428243, 1130357986741545, 12923637003161409, 151479552582252239
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2003, May 22 2008

Keywords

Comments

Equals row sums of triangle A291820.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 419*x^5 + 2809*x^6 +...
The g.f. A(x) satisfies:
x*A(x) = x + x^2*A(x) + d/dx x^4*A(x)^2/2! + d^2/dx^2 x^6*A(x)^3/3! + d^3/dx^3 x^8*A(x)^4/4! +...
The logarithm of the g.f. is given by:
log(A(x)) = x*A(x) + d/dx x^3*A(x)^2/2! + d^2/dx^2 x^5*A(x)^3/3! + d^3/dx^3 x^7*A(x)^4/4! + d^4/dx^4 x^9*A(x)^5/5! +...
From _Paul D. Hanna_, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A + x*B*C;
C = B + x*C*D;
D = C + x*D*E;
E = D + x*E*F ; ...
where variables B,C,D,E,..., are formed from successive iterations of x*A(x):
B = A(x)*A(x*A(x)), C = B*A(x*B), D = C*A(x*C), E = D*A(x*D), ...;
more explicilty,
B = 1 + 2*x + 8*x^2 + 42*x^3 + 258*x^4 + 1764*x^5 + 13070*x^6 +...,
C = 1 + 3*x + 15*x^2 + 93*x^3 + 655*x^4 + 5039*x^5 + 41453*x^6 +...,
D = 1 + 4*x + 24*x^2 + 172*x^3 + 1372*x^4 + 11796*x^5 +...,
E = 1 + 5*x + 35*x^2 + 285*x^3 + 2545*x^4 + 24255*x^5 +...,
... (End)
Related expansions:
A(x*A(x)) = 1 + x + 4*x^2 + 22*x^3 + 142*x^4 + 1016*x^5 + 7838*x^6 + 64174*x^7 + 552112*x^8 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1054*x^5 + 7039*x^6 + 50632*x^7 + 387613*x^8 +...
d/dx x^4*A(x)^2/2! = 2*x^3 + 5*x^4 + 21*x^5 + 112*x^6 + 692*x^7 + 4743*x^8 +...
d^2/dx^2 x^6*A(x)^3/3! = 5*x^4 + 21*x^5 + 112*x^6 + 696*x^7 + 4815*x^8 +...
d^3/dx^3 x^8*A(x)^4/4! = 14*x^5 + 84*x^6 + 540*x^7 + 3795*x^8 +...
d^4/dx^4 x^10*A(x)^5/5! = 42*x^6 + 330*x^7 + 2475*x^8 + 19305*x^9 +...
...
d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n! = A000108(n)*x^(n+1) +...
		

Crossrefs

Apart from signs, same as A067145. - Philippe Deléham, Jun 18 2006

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x A[x]^2 A[x A[x]] + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n++; A = x + O(x^2); for(i=2, n, A = x / (1 - subst(A, x, A))); polcoeff(A, n))}; /* Michael Somos, May 21 2005 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x+O(x^2); for(i=1,n, A=1/(1-x*A*subst(A,x,x*A)));polcoeff(A,n))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x+O(x^2);for(i=0,n, A=(1/x)*serreverse(x-x^2*A));polcoeff(A,n))}
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+k+m,k)/(n+k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    /* n-th Derivative: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    /* G.f.: [Paul D. Hanna, Dec 18 2010] */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*A^m/m!))+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* n-th Derivative: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    /* G.f.: [Paul D. Hanna, May 31 2012] */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=1+(1/x)*sum(m=1, n+1, Dx(m-1, x^(2*m)*A^m/m!))+x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies:
(1) A(x) = (1/x)*Series_Reversion(x - x^2*A(x)).
(2) A(x) = 1 + (1/x)*Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n!.
(3) A(x) = exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*A(x)^n/n! ).
(4) A(x) = 1/(1 - x*A(x)*A(x*A(x))).
(5) A(x) = f(x*A(x)) = (1-1/f(x))/x where f(x) is the g.f. of A088713.
Given g.f. A(x), then B(x) = x*A(x) satisfies 0 = f(x, B(x), B(B(x))) where f(a0, a1, a2) = a0 - a1 + a1*a2. - Michael Somos, May 21 2005
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+k+m,k)/(n+k+m) * a(n-k,k).
(End)
a(n) = Sum_{k=0..n} A291820(n+1,k). - Paul D. Hanna, Sep 01 2017

A212919 G.f. satisfies: A(x) = x^3 - x + Series_Reversion(x - x*A(x)).

Original entry on oeis.org

1, 1, 1, 1, 5, 14, 29, 73, 229, 671, 1840, 5415, 16983, 52547, 161420, 511039, 1655598, 5372395, 17527912, 58076084, 194676024, 656160449, 2227549164, 7635624954, 26380508479, 91696805060, 320866223000, 1130833326852, 4010720214072, 14306769257286
Offset: 3

Views

Author

Paul D. Hanna, May 31 2012

Keywords

Comments

Compare the g.f. to a g.f. G(x) of A088714 (offset 1), which satisfies:
G(x) = Series_Reversion(x - x*G(x)),
G(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*G(x)^n/n!, and
G(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*G(x)^n/n! ).

Examples

			G.f.: A(x) = x^3 + x^4 + x^5 + x^6 + 5*x^7 + 14*x^8 + 29*x^9 + 73*x^10 +...
The series reversion of x - x*A(x) begins:
x + x^4 + x^5 + x^6 + 5*x^7 + 14*x^8 + 29*x^9 + 73*x^10 + 229*x^11 +...
which equals x - x^3 + A(x).
The g.f. satisfies:
A(x) = x^3 + x*A(x) + d/dx x^2*A(x)^2/2! + d^2/dx^2 x^3*A(x)^3/3! + d^3/dx^3 x^4*A(x)^4/4! +...
log(1-x^2 + A(x)/x) = A(x) + d/dx x*A(x)^2/2! + d^2/dx^2 x^2*A(x)^3/3! + d^3/dx^3 x^3*A(x)^4/4! +...
Related expansions:
d/dx x^2*A(x)^2/2! = 4*x^7 + 9*x^8 + 15*x^9 + 22*x^10 + 78*x^11 + 260*x^12 +...
d^2/dx^2 x^3*A(x)^3/3! = 22*x^10 + 78*x^11 + 182*x^12 + 350*x^13 + 1080*x^14 +...
d^3/dx^3 x^4*A(x)^4/4! = 140*x^13 + 680*x^14 + 2040*x^15 + 4845*x^16 +...
d^4/dx^4 x^5*A(x)^5/5! = 969*x^16 + 5985*x^17 + 21945*x^18 + 61985*x^19 +...
...
d^(n-1)/dx^(n-1) x^n*A(x)^n/n! = A002293(n)*x^(3*n+1) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x^3); for(i=1, n, A=x^3-x+serreverse(x-x*A +x*O(x^n))); polcoeff(A, n)}
    for(n=3, 40, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
    {a(n)=local(A=x^3); for(i=1, n, A=x^3+sum(m=1, n, Dx(m-1, x^m*A^m/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=3, 40, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
    {a(n)=local(A=x^3); for(i=1, n, A=x^3-x+x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*A^m/m!)+x*O(x^n)))); polcoeff(A, n)}
    for(n=3, 40, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x^3 + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*A(x)^n/n!.
(2) A(x) = x^3 - x + x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*A(x)^n/n! ).

A212922 G.f. satisfies: A(x) = x^2/(1-x) + Series_Reversion(x - x*A(x)).

Original entry on oeis.org

1, 2, 5, 21, 120, 800, 5881, 46565, 391876, 3473879, 32226510, 311313683, 3119693862, 32333294383, 345754479372, 3807294710182, 43101806735623, 500977869387150, 5971566838065819, 72925079326977943, 911614856156206061, 11656341547670071145, 152347288068103795503
Offset: 1

Views

Author

Paul D. Hanna, May 31 2012

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 5*x^3 + 21*x^4 + 120*x^5 + 800*x^6 + 5881*x^7 +...
The series reversion of x - x*A(x) begins:
x + x^2 + 4*x^3 + 20*x^4 + 119*x^5 + 799*x^6 + 5880*x^7 +...
which equals A(x) - x^2/(1-x).
The g.f. A(x) satisfies:
A(x) - x^2/(1-x) = x + x*A(x) + d/dx x^2*A(x)^2/2! + d^2/dx^2 x^3*A(x)^3/3! + d^3/dx^3 x^4*A(x)^4/4! +...
log(A(x)/x - x/(1-x)) = A(x) + d/dx x*A(x)^2/2! + d^2/dx^2 x^2*A(x)^3/3! + d^3/dx^3 x^3*A(x)^4/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2); for(i=1, n, A=x^2/(1-x+x*O(x^n))+serreverse(x-x*A +x*O(x^n))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
    {a(n)=local(A=x+x^2); for(i=1, n, A=x/(1-x+x*O(x^n))+sum(m=1, n, Dx(m-1, x^m*A^m/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
    {a(n)=local(A=x+x^2); for(i=1, n, A=x^2/(1-x+x*O(x^n))+x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*A^m/m!)+x*O(x^n)))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x/(1-x) + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*A(x)^n/n!.
(2) A(x) = x^2/(1-x) + x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*A(x)^n/n! ).

A212923 G.f. satisfies: A(x) = x^2 + Series_Reversion(x - x*A(x)).

Original entry on oeis.org

1, 2, 4, 19, 111, 734, 5338, 41839, 348827, 3065255, 28199803, 270253498, 2687629926, 27652068276, 293627150268, 3211604669731, 36124424800797, 417294625090201, 4944772338009206, 60045368928594948, 746560751627818906, 9496624640844863631, 123507266690219103213
Offset: 1

Views

Author

Paul D. Hanna, May 31 2012

Keywords

Comments

This is an application of the more general formula given by:
if G(x) = Series_Reversion(x - x*F(x)), with F(0)=0, then
(1) G(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*F(x)^n/n!,
(2) G(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*F(x)^n/n! );
here F(x) = A(x) and G(x) = A(x) - x^2.

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 19*x^4 + 111*x^5 + 734*x^6 + 5338*x^7 +...
The series reversion of x - x*A(x) begins:
x + x^2 + 4*x^3 + 19*x^4 + 111*x^5 + 734*x^6 + 5338*x^7 +...
which equals A(x) - x^2.
The g.f. A(x) satisfies:
A(x) - x^2 = x + x*A(x) + d/dx x^2*A(x)^2/2! + d^2/dx^2 x^3*A(x)^3/3! + d^3/dx^3 x^4*A(x)^4/4! +...
log(A(x)/x - x) = A(x) + d/dx x*A(x)^2/2! + d^2/dx^2 x^2*A(x)^3/3! + d^3/dx^3 x^3*A(x)^4/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2); for(i=1, n, A=x^2+serreverse(x-x*A +x*O(x^n))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
    {a(n)=local(A=x+x^2); for(i=1, n, A=x+x^2+sum(m=1, n, Dx(m-1, x^m*A^m/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
    {a(n)=local(A=x+x^2); for(i=1, n, A=x^2+x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*A^m/m!)+x*O(x^n)))); polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x+x^2 + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*A(x)^n/n!.
(2) A(x) = x^2 + x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*A(x)^n/n! ).
Showing 1-4 of 4 results.