cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212912 Numbers k such that 3^(m+3) == 9 (mod m) where m = (k-1)^2 - 1.

Original entry on oeis.org

3, 5, 7, 11, 17, 37, 47, 53, 67, 97, 101, 121, 211, 257, 367, 379, 457, 617, 911, 1091, 1237, 1297, 1361, 1549, 2003, 2557, 2851, 2897, 3517, 3733, 4201, 4357, 5209, 6481, 7621, 8461, 8647, 8689, 10253, 10457, 10631, 11953, 13729, 14401, 14951, 17431, 17837
Offset: 1

Views

Author

Alzhekeyev Ascar M, May 30 2012

Keywords

Comments

Composites begin: 121, 108781, 155365, 267547, 2774521, 3166087, 3225601, 4907701, 8341201, 10712857, 11035921, 13216141, 17559829, 21708961, 29641921, 31116241, 31150351, ... are all composite terms congruent to 1 (mod 3)?

Programs

  • Mathematica
    Join[{3},Select[Range[4,20000],PowerMod[3,(#-1)^2+2,(#-1)^2-1]==9&]] (* Harvey P. Dale, Dec 07 2019 *)
  • PARI
    for(n=2, 1000, m=n^2-1; if(Mod(3, m)^(m+3)==9, print(n+1)));

Extensions

More terms from Harvey P. Dale, Dec 07 2019