A212921 Composite number n = Product(p_j^k_j) that under the iteration of the map Product (p_j^k_j) -> Sum (p_j * k_j) reaches a limit that divides the number itself.
4, 15, 20, 21, 35, 42, 55, 65, 70, 95, 100, 105, 110, 120, 125, 130, 135, 140, 150, 160, 161, 170, 180, 182, 187, 190, 200, 203, 217, 220, 225, 231, 240, 260, 270, 280, 285, 301, 305, 312, 315, 319, 322, 340, 343, 351, 365, 370, 371, 375, 395, 400, 406, 407
Offset: 1
Keywords
Examples
70 = 2*5*7 -> 2+5+7 = 14 =2*7 -> 2+7=9 = 3^2 -> 3*2=6=2*3 -> 2+3=5 and 70/5=14.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A029909.
Programs
-
Maple
with(numtheory); A212921:=proc(q) local a,b,c,d,i,k,n; print(4); for n from 5 to q do if not isprime(n) then a:=n; while not isprime(a) do b:=ifactors(a)[2]; c:=nops(b); b:=op(b); d:=0; if c=1 then d:=b[1]*b[2]; else for k from 1 to c do d:=d+b[k][1]*b[k][2]; od; fi; a:=d; if isprime(d) then if trunc(n/d)=n/d then lprint(n,d); fi; break; fi; od; fi; od; end: A212921(10000);
-
Mathematica
it[n_] := it[n] = Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; Dot[p, e]]; it2[n_] := FixedPointList[it[#] &, n]; Select[Range[2, 1000], ! PrimeQ[#] && Mod[#, it2[#][[-1]]] == 0 &] (* T. D. Noe, Jun 01 2012 *)
Comments