cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212921 Composite number n = Product(p_j^k_j) that under the iteration of the map Product (p_j^k_j) -> Sum (p_j * k_j) reaches a limit that divides the number itself.

Original entry on oeis.org

4, 15, 20, 21, 35, 42, 55, 65, 70, 95, 100, 105, 110, 120, 125, 130, 135, 140, 150, 160, 161, 170, 180, 182, 187, 190, 200, 203, 217, 220, 225, 231, 240, 260, 270, 280, 285, 301, 305, 312, 315, 319, 322, 340, 343, 351, 365, 370, 371, 375, 395, 400, 406, 407
Offset: 1

Views

Author

Paolo P. Lava, May 31 2012

Keywords

Comments

Apart from the case n=4, the limit of the iteration is a prime number.

Examples

			70 = 2*5*7 -> 2+5+7 = 14 =2*7 -> 2+7=9 = 3^2 -> 3*2=6=2*3 -> 2+3=5 and 70/5=14.
		

Crossrefs

Cf. A029909.

Programs

  • Maple
    with(numtheory);
    A212921:=proc(q)
    local a,b,c,d,i,k,n;
    print(4);
    for n from 5 to q do
      if not isprime(n) then a:=n;
        while not isprime(a) do
        b:=ifactors(a)[2]; c:=nops(b); b:=op(b); d:=0;
        if c=1 then d:=b[1]*b[2];
        else for k from 1 to c do d:=d+b[k][1]*b[k][2]; od; fi;
        a:=d; if isprime(d) then if trunc(n/d)=n/d then lprint(n,d); fi; break; fi; od;
      fi;
    od;
    end:
    A212921(10000);
  • Mathematica
    it[n_] := it[n] = Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; Dot[p, e]]; it2[n_] := FixedPointList[it[#] &, n]; Select[Range[2, 1000], ! PrimeQ[#] && Mod[#, it2[#][[-1]]] == 0 &] (* T. D. Noe, Jun 01 2012 *)