cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212953 Minimal order of degree-n irreducible polynomials over GF(2).

Original entry on oeis.org

1, 3, 7, 5, 31, 9, 127, 17, 73, 11, 23, 13, 8191, 43, 151, 257, 131071, 19, 524287, 25, 49, 69, 47, 119, 601, 2731, 262657, 29, 233, 77, 2147483647, 65537, 161, 43691, 71, 37, 223, 174763, 79, 187, 13367, 147, 431, 115, 631, 141, 2351, 97, 4432676798593, 251
Offset: 1

Views

Author

Alois P. Heinz, Jun 01 2012

Keywords

Comments

a(n) = smallest odd m such that A002326((m-1)/2) = n. - Thomas Ordowski, Feb 04 2014
For n > 1; n < a(n) < 2^n, wherein a(n) = n+1 iff n+1 is A001122 a prime with primitive root 2, or a(n) = 2^n-1 iff n is a Mersenne exponent A000043. - Thomas Ordowski, Feb 08 2014

Examples

			For n=4 the degree-4 irreducible polynomials p over GF(2) are 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. Their orders (i.e., the smallest integer e for which p divides x^e+1) are 5, 15, 15. (Example: (1+x+x^2+x^3+x^4) * (1+x) == x^5+1 (mod 2)). Thus the minimal order is 5 and a(4) = 5.
		

References

  • W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer 2004, Third Edition, 4.3 Factorization of Prime Ideals in Extensions. More About the Class Group (Theorem 4.33), 4.4 Notes to Chapter 4 (Theorem 4.40). - Regarding the first comment.

Crossrefs

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          divisors(2^n-1) minus U(n-1)
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    a:= n-> min(M(n)[]):
    seq(a(n), n=1..50);
  • Mathematica
    M[n_] := M[n] = Divisors[2^n-1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    a[n_] := Min[M[n]];
    Array[a, 50] (* Jean-François Alcover, Mar 22 2017, translated from Maple *)

Formula

a(n) = min(M(n)) with M(n) = {d : d|(2^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A059912(n,1) = A213224(n,1).