A212953 Minimal order of degree-n irreducible polynomials over GF(2).
1, 3, 7, 5, 31, 9, 127, 17, 73, 11, 23, 13, 8191, 43, 151, 257, 131071, 19, 524287, 25, 49, 69, 47, 119, 601, 2731, 262657, 29, 233, 77, 2147483647, 65537, 161, 43691, 71, 37, 223, 174763, 79, 187, 13367, 147, 431, 115, 631, 141, 2351, 97, 4432676798593, 251
Offset: 1
Keywords
Examples
For n=4 the degree-4 irreducible polynomials p over GF(2) are 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. Their orders (i.e., the smallest integer e for which p divides x^e+1) are 5, 15, 15. (Example: (1+x+x^2+x^3+x^4) * (1+x) == x^5+1 (mod 2)). Thus the minimal order is 5 and a(4) = 5.
References
- W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer 2004, Third Edition, 4.3 Factorization of Prime Ideals in Extensions. More About the Class Group (Theorem 4.33), 4.4 Notes to Chapter 4 (Theorem 4.40). - Regarding the first comment.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1236 (first 179 terms from Alois P. Heinz)
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Polynomial Order
Programs
-
Maple
with(numtheory): M:= proc(n) option remember; divisors(2^n-1) minus U(n-1) end: U:= proc(n) option remember; `if`(n=0, {}, M(n) union U(n-1)) end: a:= n-> min(M(n)[]): seq(a(n), n=1..50);
-
Mathematica
M[n_] := M[n] = Divisors[2^n-1] ~Complement~ U[n-1]; U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; a[n_] := Min[M[n]]; Array[a, 50] (* Jean-François Alcover, Mar 22 2017, translated from Maple *)
Comments