A212954 Array of Ramsey numbers R(n,k) (n >= 1, k >= 1) read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 14, 18, 14, 6, 1, 1, 7, 18, 25, 25, 18, 7, 1, 1, 8, 23
Offset: 1
Examples
The initial antidiagonals are: 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 14, 18, 14, 6, 1, 1, 7, 18, 25, 25, 18, 7, 1, 1, 8, 23, ?, ?, ?, 23, 8, 1, 1, 9, 28, ?, ?, ?, ?, 28, 9, 1, 1, 10, 36, ?, ?, ?, ?, ?, 36, 10, 1, ... ...
References
- See A059442.
Links
- Stanislaw Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics, Dynamic Surveys, DS1, Mar 3 2017.
- Eric Weisstein's World of Mathematics, Ramsey Number
- Wikipedia, Ramsey's theorem
Formula
R(r, 1) = R(1, r) = 1
R(r, 2) = R(2, r) = r
R(r, s) <= R(r-1, s) + R(r, s-1)
R(r, s) <= R(r-1, s) + R(r, s-1) - 1 if R(r-1, s) and R(r, s-1) are both even
R(r, r) <= 4 * R(r, r-2) + 2
Extensions
Edited by N. J. A. Sloane, Nov 05 2023
Comments