A212963 a(n) = number of ordered triples (w,x,y) such that w,x,y are all in {0,...,n} and the numbers |w-x|, |x-y|, |y-w| are distinct.
0, 0, 0, 12, 36, 84, 156, 264, 408, 600, 840, 1140, 1500, 1932, 2436, 3024, 3696, 4464, 5328, 6300, 7380, 8580, 9900, 11352, 12936, 14664, 16536, 18564, 20748, 23100, 25620, 28320, 31200, 34272, 37536, 41004, 44676, 48564, 52668, 57000
Offset: 0
Examples
a(3) counts the 12 ordered triples in the first column of the following list: (w,x,y) (|w-x|,|x-y|,|y-w|) ---------------------------- (0,1,3) (1,2,3) (0,2,3) (2,1,3) (0,3,1) (3,2,1) (0,3,2) (3,1,2) (1,0,3) (1,3,2) (1,3,0) (2,3,1) (2,0,3) (2,3,1) (2,3,0) (1,3,2) (3,0,1) (3,1,2) (3,0,2) (3,2,1) (3,1,0) (2,1,3) (3,2,0) (1,2,3)
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Programs
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
G.f.: 12*x^3/((1 + x)*(1 - x)^4).
a(n+3) = 12*A002623(n).
a(n) = (2*n^3 - 3*n^2 - 2*n + 3*(n mod 2))/2. - Ayoub Saber Rguez, Dec 06 2021
Extensions
Definition corrected by Clark Kimberling, Dec 28 2021
Comments