A212976 Number of (w,x,y) with all terms in {0,...,n} and odd range.
0, 6, 12, 36, 60, 114, 168, 264, 360, 510, 660, 876, 1092, 1386, 1680, 2064, 2448, 2934, 3420, 4020, 4620, 5346, 6072, 6936, 7800, 8814, 9828, 11004, 12180, 13530, 14880, 16416, 17952, 19686, 21420, 23364, 25308, 27474, 29640, 32040
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Mod[Max[w, x, y] - Min[w, x, y], 2] == 1, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 60]] (* A212976 *) m/6 (* A005993 except for initial 0 *) LinearRecurrence[{2,1,-4,1,2,-1},{0,6,12,36,60,114},40] (* Harvey P. Dale, Jan 21 2017 *)
Formula
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = 6*x*(1 + x^2) and g(x) = ((1-x)^4)*(1+x)^2.
a(n+1) = 6*A005993(n). [Bruno Berselli, Jun 15 2012]
Comments