cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212976 Number of (w,x,y) with all terms in {0,...,n} and odd range.

Original entry on oeis.org

0, 6, 12, 36, 60, 114, 168, 264, 360, 510, 660, 876, 1092, 1386, 1680, 2064, 2448, 2934, 3420, 4020, 4620, 5346, 6072, 6936, 7800, 8814, 9828, 11004, 12180, 13530, 14880, 16416, 17952, 19686, 21420, 23364, 25308, 27474, 29640, 32040
Offset: 0

Views

Author

Clark Kimberling, Jun 03 2012

Keywords

Comments

a(n) + A212975(n) = (n+1)^3. Six divides every term.
For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Mod[Max[w, x, y] - Min[w, x, y], 2] == 1,
       s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212976 *)
    m/6  (* A005993 except for initial 0 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{0,6,12,36,60,114},40] (* Harvey P. Dale, Jan 21 2017 *)

Formula

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = 6*x*(1 + x^2) and g(x) = ((1-x)^4)*(1+x)^2.
a(n+1) = 6*A005993(n). [Bruno Berselli, Jun 15 2012]