cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212979 Number of (w,x,y) with all terms in {0,...,n} and range=average.

Original entry on oeis.org

1, 1, 1, 7, 10, 13, 19, 25, 34, 40, 49, 61, 70, 82, 94, 109, 124, 136, 154, 172, 190, 208, 226, 250, 271, 292, 316, 340, 367, 391, 418, 448, 475, 505, 535, 568, 601, 631, 667, 703, 739, 775, 811, 853, 892, 931, 973, 1015, 1060, 1102, 1147, 1195, 1240
Offset: 0

Views

Author

Clark Kimberling, Jun 03 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Examples

			a(3)=7 counts these (w,x,y): (0,0,0) and the six permutations of (1,2,3).
G.f. = 1 + x + x^2 + 7*x^3 + 10*x^4 + 13*x^5 + 19*x^6 + 25*x^7 + 34*x^8 + ... - _Michael Somos_, Jan 25 2024
		

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Max[w, x, y] - Min[w, x, y] == (w + x + y)/3, s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212979 *)
    a[ n_] := If[n<0, a[-1-n], Sum[ Boole[Max[t] - Min[t] == Mean[t]], {t, Tuples[Range[0, n], 3]}]]; (* Michael Somos, Jan 25 2024 *)
    a[ n_] := (9*(n^2+n) + 6*{10, 7, 1, 12, 10, 5, 7, 6, 12, 5}[[1 + Min[Mod[n, 20], Mod[-1-n, 20]]]])/20 - 2; (* Michael Somos, Jan 25 2024 *)
  • PARI
    {a(n) = (9*(n^2+n) + 6*[10, 7, 1, 12, 10, 5, 7, 6, 12, 5][1 + min(n%20, (-1-n)%20)])/20 - 2}; /* Michael Somos, Jan 25 2024 */

Formula

a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9).
G.f.: (1 - x + x^2 + 5*x^3 - 3*x^4 + 5*x^5 + x^6 - x^7 + x^8)/(1 - 2*x + 2*x^2 - 2*x^3 + x^4 - x^5 + 2*x^6 - 2*x^7 + 2*x^8 - x^9).
From Michael Somos, Jan 25 2024: (Start)
a(n) = a(-1-n) for all n in Z.
G.f.: (1 + x)*(1 - x + x^2 + 5*x^3 - 3*x^4 + 5*x^5 + x^6 - x^7 + x^8)/((1 - x)*(1 - x^4)*(1 - x^5)). (End)
For n > 2, a(n) = 3 * A368482(n+3) + 4. - Helmut Ruhland, Jan 31 2024