A213005 a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a triangular number.
1, 3, 5, 9, 17, 33, 45, 72, 143, 152, 303, 420, 451, 603, 952, 1398, 1572, 2408, 3762, 4233, 5880, 6325, 8469, 13384, 20079, 34189, 62769, 82665, 87448, 161037, 287283, 371337, 515745, 533505, 573815, 734484, 737035, 737149, 767505, 825495, 887865, 1136468, 2272935
Offset: 0
Crossrefs
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[ IntegerQ[ Sqrt[8k*a[n-1]+1] ], Return[k] ] ]; Table[ Print[a[n]]; a[n], {n, 0, 42}] (* Jean-François Alcover, Sep 14 2012 *)
-
Python
a = 1 for n in range(55): print(a, end=',') b = k = 0 while k<=a: tn = b*(b+1)//2 k = 0 if tn%a==0: k = tn // a b += 1 a = k
Comments