cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213005 a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a triangular number.

Original entry on oeis.org

1, 3, 5, 9, 17, 33, 45, 72, 143, 152, 303, 420, 451, 603, 952, 1398, 1572, 2408, 3762, 4233, 5880, 6325, 8469, 13384, 20079, 34189, 62769, 82665, 87448, 161037, 287283, 371337, 515745, 533505, 573815, 734484, 737035, 737149, 767505, 825495, 887865, 1136468, 2272935
Offset: 0

Views

Author

Alex Ratushnyak, Aug 03 2012

Keywords

Comments

Corresponding triangular numbers t(n)=a(n)*a(n+1): 3, 15, 45, 153, 561, 1485, 3240, 10296, 21736, 46056, 127260, 189420, 271953, 574056, 1330896, 2197656, 3785376, 9058896, 15924546, 24890040, 37191000, ...

Crossrefs

Cf. A081976 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a Fibonacci number).
Cf. A006882 (a(0)=a(1)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a factorial).
Cf. A079078 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a primorial).

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[ IntegerQ[ Sqrt[8k*a[n-1]+1] ], Return[k] ] ]; Table[ Print[a[n]]; a[n], {n, 0, 42}] (* Jean-François Alcover, Sep 14 2012 *)
  • Python
    a = 1
    for n in range(55):
        print(a, end=',')
        b = k = 0
        while k<=a:
            tn = b*(b+1)//2
            k = 0
            if tn%a==0:
                k = tn // a
            b += 1
        a = k