cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A214961 a(0)=a(1)=1, a(n) = least k > a(n-1) such that k*a(n-2) is a triangular number.

Original entry on oeis.org

1, 1, 3, 6, 7, 11, 13, 21, 25, 30, 49, 59, 97, 117, 193, 233, 385, 465, 492, 596, 983, 1191, 1965, 2381, 2516, 4761, 5031, 5761, 6290, 8466, 9795, 15470, 15867, 17403, 20559, 24170, 26945, 27192, 27755, 30130, 35235, 43537, 45100, 56805, 58717, 58739, 91000, 117477
Offset: 0

Views

Author

Alex Ratushnyak, Aug 03 2012

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(a,b)
      local s;
      s:= map(t -> rhs(op(t)), [msolve(x^2=1, 8*a)]);
      min(select(`>`, map(t -> (t^2-1)/(8*a), s), b))
    end proc:
    A[0]:= 1: A[1]:= 1:
    for nn from 2 to 100 do
      A[nn]:= f(A[nn-2],A[nn-1])
    od:
    seq(A[i],i=0..100); # Robert Israel, Jun 17 2020
  • Mathematica
    a[0]=a[1]=1;a[n_]:=a[n]=(k=a[n-1]+1;While[!IntegerQ@Sqrt[1+8*a[n-2]k],k++];k);Array[a,50,0] (* Giorgos Kalogeropoulos, May 21 2021 *)
    lktn[{a_,b_}]:=Module[{k=b+1},While[!OddQ[Sqrt[8a k+1]],k++];{b,k}]; NestList[lktn,{1,1},50][[;;,1]] (* Harvey P. Dale, Sep 09 2023 *)
  • Python
    prpr = prev = 1
    for n in range(1, 55):
        print(prpr, end=', ')
        b = k = 0
        while k<=prev:
            d = b*(b+1)//2
            k = 0
            if d%prpr==0:
                k = d // prpr
            b += 1
        prpr = prev
        prev = k

A212329 Expansion of x*(5+x)/(1-7*x+7*x^2-x^3).

Original entry on oeis.org

0, 5, 36, 217, 1272, 7421, 43260, 252145, 1469616, 8565557, 49923732, 290976841, 1695937320, 9884647085, 57611945196, 335787024097, 1957110199392, 11406874172261, 66484134834180, 387497934832825, 2258503474162776, 13163522910143837, 76722633986700252
Offset: 1

Views

Author

Kenneth J Ramsey, May 14 2012

Keywords

Comments

Table of differences re Table A182441.
This is a sequence of differences between rows k and k+1 of table A182441. That is if A182441(k+1,0)-A182441(k,0) = 1, a(n) = A182441(k+1,n+1) - A182441(k,n+1) for n = 0 to 3. The remainder of the sequence is a continuation using the recursive formula D(n) = 6D(n-1)- D(n-2) + 6.
It appears that for n > 0, a(n) is divisible by A213005(n).
It appears that if p is a prime of the form 8*r +/- 1 then a(p-1) == 0 (mod p), and that if p is a prime of the form 8*r +/- 3 then a(p+1) == 0 (mod p).

Crossrefs

Programs

  • Mathematica
    m = 12; n = 1; c = 0;
    list3 = Reap[While[c < 22, t = 6 n - m + 6; Sow[t];m = n; n = t;c++]][[2,1]]
    CoefficientList[ Series[x (5 + x)/(1 - 7x + 7x^2 - x^3), {x, 0, 20}], x] (* or *)
    LinearRecurrence[{7, -7, 1}, {0, 5, 36}, 21] (* Robert G. Wilson v, Jun 24 2014 *)
  • PARI
    concat(0, Vec(x^2*(5+x)/((1-x)*(1-6*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 05 2016

Formula

a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
From Colin Barker, Mar 05 2016: (Start)
a(n) = (-6+(5-3*sqrt(2))*(3+2*sqrt(2))^n + (3-2*sqrt(2))^n*(5+3*sqrt(2)))/4.
G.f.: x*(5+x) / ((1-x)*(1-6*x+x^2)).
(End)

A382245 Lexicographically earliest sequence of distinct nonnegative integers such that the product of two consecutive terms is always a triangular number (A000217).

Original entry on oeis.org

0, 1, 3, 2, 5, 9, 4, 7, 13, 6, 11, 21, 10, 12, 23, 45, 14, 15, 8, 17, 33, 16, 31, 61, 30, 26, 51, 25, 49, 24, 22, 43, 85, 42, 28, 55, 18, 35, 44, 87, 19, 37, 73, 36, 56, 111, 98, 195, 62, 69, 34, 39, 20, 41, 81, 40, 52, 103, 205, 66, 58, 115, 57, 29, 59, 117
Offset: 0

Views

Author

Rémy Sigrist, Mar 19 2025

Keywords

Comments

This sequence has similarities with A026741: in both sequences, the product of two consecutive terms is always a triangular number; here all terms are distinct, there all products of two consecutive terms are distinct.

Examples

			The initial terms are:
  n   a(n)  a(n)*a(n+1)
  --  ----  ------------------
   0     0     0 = A000217(0)
   1     1     3 = A000217(2)
   2     3     6 = A000217(3)
   3     2    10 = A000217(4)
   4     5    45 = A000217(9)
   5     9    36 = A000217(8)
   6     4    28 = A000217(7)
   7     7    91 = A000217(13)
   8    13    78 = A000217(12)
   9     6    66 = A000217(11)
  10    11   231 = A000217(21)
  11    21   210 = A000217(20)
  12    10   120 = A000217(15)
  13    12   276 = A000217(23)
  14    23  1035 = A000217(45)
  15    45   630 = A000217(35)
		

Crossrefs

Programs

  • PARI
    \\ See Links section.
Showing 1-3 of 3 results.