A213009 G.f. A(x) satisfies: A(A(x)) = x+x^2 + x*A(A(A(A(x)))).
1, 1, 1, 5, 21, 125, 825, 6133, 49925, 439417, 4142945, 41544161, 440710117, 4924691541, 57766255689, 709205703565, 9090541134373, 121389729560633, 1685431945085489, 24289856880005441, 362776874949660485, 5606980244843123077, 89560387072919814553
Offset: 1
Keywords
Examples
G.f.: A(x) = x + x^2 + x^3 + 5*x^4 + 21*x^5 + 125*x^6 + 825*x^7 +... where A(A(x)) = x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 480*x^6 + 3296*x^7 +... A(A(A(A(x)))) = x + 4*x^2 + 16*x^3 + 80*x^4 + 480*x^5 + 3296*x^6 +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..256
Programs
-
PARI
{a(n)=local(A=x+x^2,B=x+2*x^2);for(i=1,n,B=x+x^2+x*subst(B,x,B+x*O(x^n))); for(i=1,n,A=(A+subst(B,x,serreverse(A+x*O(x^n))))/2);polcoeff(A,n)} for(n=1,31,print1(a(n),", "))
Formula
a(n) == 1 (mod 4).
Comments