cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213010 G.f. satisfies: A(x) = x+x^2 + x*A(A(x)).

Original entry on oeis.org

1, 2, 4, 16, 80, 480, 3296, 25152, 209600, 1884160, 18110080, 184898304, 1994964736, 22654449664, 269855506944, 3362350046208, 43715434232832, 591812683833344, 8326660788725760, 121550217508892672, 1838089917983911936, 28753297176215257088, 464675647688625364992
Offset: 1

Views

Author

Paul D. Hanna, Jun 01 2012

Keywords

Comments

The half-iteration of the g.f. equals an integer series (A213009).

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 480*x^6 + 3296*x^7 +...
where
A(A(x)) = x + 4*x^2 + 16*x^3 + 80*x^4 + 480*x^5 + 3296*x^6 +...
Related expansions.
Let B(B(x)) = A(x), then B(x) is an integer series:
B(x) = x + x^2 + x^3 + 5*x^4 + 21*x^5 + 125*x^6 + 825*x^7 + 6133*x^8 +...
where the coefficients of B(x) are congruent to 1 modulo 4.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+2*x^2);for(i=1,n,A=x+x^2+x*subst(A,x,A+x*O(x^n)));polcoeff(A,n)}
    for(n=1,31,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = x/G(x) - 1 - G(x) where A(G(x)) = x.

A215115 G.f. A(x) satisfies: A(A(A(x))) = G(x) where G(x) = x + 2*x^2 + x*G(G(G(x))) is the g.f. of A215114.

Original entry on oeis.org

1, 1, 1, 19, 163, 2269, 34093, 584767, 10989271, 224143489, 4910384809, 114714875755, 2841991084747, 74337591206629, 2045557726962949, 59036247882081847, 1782385894711138303, 56166016733387381449, 1843556640469175481985, 62915735570546535121891
Offset: 1

Views

Author

Paul D. Hanna, Aug 03 2012

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 19*x^4 + 163*x^5 + 2269*x^6 + 34093*x^7 +...
Let G(x) = A(A(A(x))):
G(x) = x + 3*x^2 + 9*x^3 + 81*x^4 + 891*x^5 + 11907*x^6 + 184437*x^7 +...
such that G(x) = x + 2*x^2 + x*G(G(G(x))):
G(G(G(x))) = x + 9*x^2 + 81*x^3 + 891*x^4 + 11907*x^5 + 184437*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2, B=x+2*x^2); for(i=1, n+1, B=x+2*x^2+x*subst(B, x, subst(B, x, B+x*O(x^n))));
    for(j=1, n+1, A=round((2*A+subst(B, x, serreverse(subst(A,x,A+x*O(x^n)))))/3));; polcoeff(A, n)}
    for(n=1, 31, print1(a(n), ", "))

Formula

a(n) == 1 (mod 18).

A215117 G.f. A(x) satisfies: A(A(A(A(x)))) = G(x) where G(x) = x + 3*x^2 + x*G(G(G(G(x)))) is the g.f. of A215116.

Original entry on oeis.org

1, 1, 1, 49, 721, 17281, 452065, 13511953, 443435185, 15816390241, 606861668161, 24867738772849, 1082158542264721, 49785517156216897, 2412544311495241633, 122762020478952148177, 6542028190536528941425, 364254737003651267997985, 21146448814786605196994305
Offset: 1

Views

Author

Paul D. Hanna, Aug 03 2012

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 49*x^4 + 721*x^5 + 17281*x^6 + 452065*x^7 +...
Let G(x) = A(A(A(A(x)))):
G(x) = x + 4*x^2 + 16*x^3 + 256*x^4 + 4864*x^5 + 111616*x^6 + 2983936*x^7 +...
such that G(x) = x + 3*x^2 + x*G(G(G(G(x)))):
G(G(G(G(x)))) = x + 16*x^2 + 256*x^3 + 4864*x^4 + 111616*x^5 + 2983936*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2,B=x+4*x^2);for(i=1,n+1,B=x+3*x^2+x*subst(B,x,subst(B,x,subst(B,x,B+x^2*O(x^n)))));
    for(j=1, n+1, A=round((3*A+subst(B, x, serreverse(subst(A,x,subst(A,x,A+x^2*O(x^n))))))/4));; polcoeff(A, n)}
    for(n=1, 31, print1(a(n), ", "))

Formula

a(n) == 1 (mod 48).

A215119 G.f. A(x) satisfies: A(A(A(A(A(x))))) = G(x) where G(x) = x + 4*x^2 + x*G(G(G(G(G(x))))) is the g.f. of A215118.

Original entry on oeis.org

1, 1, 1, 101, 2301, 82601, 3287001, 149411501, 7474902101, 406765054801, 23836604715601, 1493376284080501, 99459838574595501, 7009748111184956601, 520845172037612209801, 40672220108202107951101, 3328819620490715884626501, 284871268231239093741932001
Offset: 1

Views

Author

Paul D. Hanna, Aug 03 2012

Keywords

Comments

a(n) == 1 (mod 100).

Examples

			G.f.: A(x) = x + x^2 + x^3 + 101*x^4 + 2301*x^5 + 82601*x^6 + 3287001*x^7 +...
Let G(x) = A(A(A(A(A(x))))):
G(x) = x + 5*x^2 + 25*x^3 + 625*x^4 + 18125*x^5 + 628125*x^6 + 25390625*x^7 +...
such that G(x) = x + 4*x^2 + x*G(G(G(G(G(x))))):
G(G(G(G(G(x))))) = x + 25*x^2 + 625*x^3 + 18125*x^4 + 628125*x^5 + 25390625*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2,B=x+4*x^2);for(i=1,n+1,B=x+4*x^2+x*subst(B,x,subst(B,x,subst(B,x,subst(B,x,B+x^2*O(x^n))))));
    for(j=1, n+1, A=round((4*A+subst(B, x, serreverse(subst(A,x,subst(A,x,subst(A,x,A+x^2*O(x^n)))))))/5));; polcoeff(A, n)}
    for(n=1, 31, print1(a(n), ", "))
Showing 1-4 of 4 results.