A213023 Expansion of psi(x)^2 * psi(-x^3) / chi(-x^2) in powers of x where psi(), chi() are Ramanujan theta functions.
1, 2, 2, 3, 2, 2, 4, 4, 5, 3, 4, 5, 4, 6, 4, 4, 5, 7, 5, 3, 6, 8, 8, 8, 6, 3, 7, 6, 10, 6, 5, 10, 4, 8, 7, 8, 10, 6, 9, 8, 5, 10, 10, 11, 6, 9, 11, 6, 12, 9, 8, 8, 10, 9, 6, 6, 15, 12, 9, 9, 6, 13, 10, 13, 10, 7, 14, 12, 12, 8, 7, 13, 10, 16, 9, 10, 10, 12
Offset: 0
Keywords
Examples
1 + 2*x + 2*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 3*x^9 + ... q^17 + 2*q^41 + 2*q^65 + 3*q^89 + 2*q^113 + 2*q^137 + 4*q^161 + 4*q^185 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A180312.
Programs
-
Mathematica
QP := QPochhammer; a[n_]:=SeriesCoefficient[(QP[q^2]^3*QP[q^3]*QP[q^4] *QP[q^12])/(QP[q]^2*QP[q^6]), {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jan 07 2018 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A)^2 * eta(x^6 + A)), n))}
Formula
Expansion of q^(-17/24) * eta(q^2)^3 * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q)^2 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, -1, 1, -2, 2, -1, 2, -2, 1, -1, 2, -3, ...].
a(n) = A180312(3*n + 1).
Comments