A213027 Number A(n,k) of 3n-length k-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 7, 19, 1, 0, 1, 1, 10, 61, 98, 1, 0, 1, 1, 13, 127, 591, 531, 1, 0, 1, 1, 16, 217, 1810, 6101, 2974, 1, 0, 1, 1, 19, 331, 4085, 27631, 65719, 17060, 1, 0, 1, 1, 22, 469, 7746, 82593, 441604, 729933, 99658, 1, 0
Offset: 0
Examples
A(0,k) = 1: the empty word. A(n,1) = 1: (aaa)^n. A(2,2) = 4: there are 4 words of length 6 over alphabet {a,b}, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa. A(2,3) = 7: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa. A(3,2) = 19: aaaaaaaaa, aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, ... 0, 1, 4, 7, 10, 13, 16, ... 0, 1, 19, 61, 127, 217, 331, ... 0, 1, 98, 591, 1810, 4085, 7746, ... 0, 1, 531, 6101, 27631, 82593, 195011, ... 0, 1, 2974, 65719, 441604, 1751197, 5153626, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, 1/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1))): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
a[0, ] = 1; a[, k_ /; k < 2] := k; a[n_, k_] := 1/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]; Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
Comments