Original entry on oeis.org
1, 4, 19, 98, 531, 2974, 17060, 99658, 590563, 3540464, 21430267, 130771376, 803538100, 4967127736, 30866224824, 192696614730, 1207967820099, 7600482116932, 47981452358201, 303820299643138, 1929099000980219, 12279621792772822, 78346444891033856
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- J.-P. Bultel and S. Giraudo, Combinatorial Hopf algebras from PROs, arXiv preprint arXiv:1406.6903 [math.CO], 2014-2016.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Noga Alon and Noah Kravitz, Counting Dope Matrices, arXiv:2205.09302 [math.CO], 2022.
-
f := n -> binomial(3*n, n) - (1/2)*add(binomial(3*n, k), k=0..n):
seq(f(n), n=1..20);
-
Table[Binomial[3 n, n] - Sum[Binomial[3 n, k], {k, 0, n}]/2, {n, 20}] (* Wesley Ivan Hurt, Jun 13 2014 *)
-
{a(n)=local(A=1+x); A=x*exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, j))*x^m/m +x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Sep 04 2012
A213028
Number A(n,k) of 3n-length k-ary words that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 8, 1, 0, 1, 4, 21, 38, 1, 0, 1, 5, 40, 183, 196, 1, 0, 1, 6, 65, 508, 1773, 1062, 1, 0, 1, 7, 96, 1085, 7240, 18303, 5948, 1, 0, 1, 8, 133, 1986, 20425, 110524, 197157, 34120, 1, 0, 1, 9, 176, 3283, 46476, 412965, 1766416, 2189799, 199316, 1, 0
Offset: 0
A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 8: there are 8 words of length 6 over alphabet {a,b} that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa, baaabb, bbaaab, bbbaaa, bbbbbb.
A(1,3) = 3: aaa, bbb, ccc.
A(2,3) = 21: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa, baaabb, bbaaab, bbbaaa, bbbbbb, bbbccc, bbcccb, bcccbb, caaacc, cbbbcc, ccaaac, ccbbbc, cccaaa, cccbbb, cccccc.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 8, 21, 40, 65, 96, ...
0, 1, 38, 183, 508, 1085, 1986, ...
0, 1, 196, 1773, 7240, 20425, 46476, ...
0, 1, 1062, 18303, 110524, 412965, 1170066, ...
0, 1, 5948, 197157, 1766416, 8755985, 30921756, ...
-
A:= (n, k)-> `if`(n=0, 1,
k/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Unprotect[Power]; 0^0 = 1; A[n_, k_] := If[n==0, 1, k/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
A218473
Number of 3n-length 3-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
Original entry on oeis.org
1, 1, 7, 61, 591, 6101, 65719, 729933, 8297247, 96044101, 1128138567, 13411861629, 161066465583, 1950996039669, 23808159962839, 292413627476141, 3611870017079871, 44838216520062117, 559127724970143079, 7000374603097246173, 87964883375131331151
Offset: 0
-
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*2^j, j=0..n-1)/n):
seq(a(n), n=0..20);
# second Maple program
a:= proc(n) a(n):= `if`(n<3, [1, 1, 7][n+1], (-81*(3*n-1)*(3*n-5)*a(n-2)
+(81*n^2-81*n+15)*a(n-1))/ ((2*n-1)*n))
end:
seq(a(n), n=0..20);
-
Flatten[{1,Table[1/n*Sum[Binomial[3*n,j]*(n-j)*2^j,{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2013 *)
Flatten[{1,Table[FullSimplify[SeriesCoefficient[(1/(81*x-3)+2/((3-81*x)*(1-27*x-3*Sqrt[3*x*(27*x-2)])^(2/3))),{x,0,n}]],{n,1,10}]}] (* Vaclav Kotesovec, Jul 06 2013 *)
A218472
Number of 3n-length n-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
Original entry on oeis.org
1, 1, 4, 61, 1810, 82593, 5153626, 410380885, 39868799482, 4579454148865, 607729841261560, 91553310170011501, 15441283593044256696, 2883254656878648757729, 590578881927993264483880, 131681888589427990097216549, 31753512197914767223878851626
Offset: 0
-
a:= n-> `if`(n<2, 1, add(binomial(3*n, j)*(n-j)*(n-1)^j, j=0..n-1)/n):
seq(a(n), n=0..20);
A218474
Number of 3n-length 4-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
Original entry on oeis.org
1, 1, 10, 127, 1810, 27631, 441604, 7293700, 123485914, 2131511455, 37368531010, 663539143015, 11908626395320, 215670579863428, 3936425910379840, 72335601620713432, 1337149262553687658, 24847762997547701695, 463900901255209923310, 8697278488612398979645
Offset: 0
-
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*3^j, j=0..n-1)/n):
seq(a(n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [1, 1, 10][n+1],
((2359*n^3 -5063*n^2 +2898*n -360)*a(n-1)
-576*(3*n-5)*(7*n-2)*(3*n-4)*a(n-2))/
(2*(2*n-1)*(7*n-9)*n))
end:
seq(a(n), n=0..30);
-
a[n_] := If[n == 0, 1, Sum[Binomial[3n, j] (n - j) 3^j, {j, 0, n - 1}]/n];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 18 2020, after Maple *)
A218475
Number of 3n-length 5-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
Original entry on oeis.org
1, 1, 13, 217, 4085, 82593, 1751197, 38413481, 864413317, 19842830065, 462825376685, 10937407206265, 261311076852245, 6301225556698177, 153160687795008445, 3748598210810053449, 92303640047399410341, 2285025852515378528913, 56836898766186234593485
Offset: 0
-
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*4^j, j=0..n-1)/n):
seq(a(n), n=0..20);
A218476
Number of 3n-length 6-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
Original entry on oeis.org
1, 1, 16, 331, 7746, 195011, 5153626, 140995716, 3958980906, 113434797571, 3303283462836, 97478710394451, 2908594804576416, 87605427983818356, 2659959016770389896, 81330226479826092536, 2501989790308939894026, 77386492111973937031491, 2405093253522796180052056
Offset: 0
-
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*5^j, j=0..n-1)/n):
seq(a(n), n=0..20);
A218477
Number of 3n-length 7-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
Original entry on oeis.org
1, 1, 19, 469, 13123, 395461, 12517939, 410380885, 13811907043, 474457464613, 16567069507219, 586287339402997, 20980966876537411, 757961579781924805, 27605221102084999411, 1012488016842242735509, 37364825362229946450595, 1386427393386051832383589
Offset: 0
-
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*6^j, j=0..n-1)/n):
seq(a(n), n=0..20);
A218478
Number of 3n-length 8-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
Original entry on oeis.org
1, 1, 22, 631, 20546, 721071, 26594464, 1016157668, 39868799482, 1596785816431, 65014851904262, 2683064838415039, 111976833827421368, 4717961282984709124, 200410768873037098384, 8573481927644738115096, 369045717586929668129706, 15972561730958196240953007
Offset: 0
-
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*7^j, j=0..n-1)/n):
seq(a(n), n=0..20);
A218479
Number of 3n-length 9-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
Original entry on oeis.org
1, 1, 25, 817, 30345, 1215521, 51186169, 2233558545, 100094682729, 4579454148865, 213011954187225, 10043235050384625, 478897402022246985, 23054568307757054433, 1118987674598361862585, 54698321862693296502737, 2690410083349269351772713
Offset: 0
-
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*8^j, j=0..n-1)/n):
seq(a(n), n=0..20);
Showing 1-10 of 11 results.
Comments