A256311
Number T(n,k) of length 3n words such that all letters of the k-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 18, 12, 0, 1, 97, 198, 55, 0, 1, 530, 2520, 1820, 273, 0, 1, 2973, 29886, 42228, 15300, 1428, 0, 1, 17059, 347907, 859180, 564585, 122094, 7752, 0, 1, 99657, 4048966, 16482191, 17493938, 6577494, 942172, 43263
Offset: 0
T(0,0) = 1: (the empty word).
T(1,1) = 1: aaa.
T(2,1) = 1: aaaaaa.
T(2,2) = 3: aaabbb, aabbba, abbbaa.
T(3,1) = 1: aaaaaaaaa.
T(3,2) = 18: aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa.
T(3,3) = 12: aaabbbccc, aaabbcccb, aaabcccbb, aabbbaccc, aabbbccca, aabbcccba, aabcccbba, abbbaaccc, abbbaccca, abbbcccaa, abbcccbaa, abcccbbaa.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 3;
0, 1, 18, 12;
0, 1, 97, 198, 55;
0, 1, 530, 2520, 1820, 273;
0, 1, 2973, 29886, 42228, 15300, 1428;
0, 1, 17059, 347907, 859180, 564585, 122094, 7752;
Columns k=0-10 give:
A000007,
A057427,
A321032,
A321033,
A321034,
A321035,
A321036,
A321037,
A321038,
A321039,
A321040.
-
A:= (n, k)-> `if`(n=0, 1,
k/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1)):
T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
A213027
Number A(n,k) of 3n-length k-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 7, 19, 1, 0, 1, 1, 10, 61, 98, 1, 0, 1, 1, 13, 127, 591, 531, 1, 0, 1, 1, 16, 217, 1810, 6101, 2974, 1, 0, 1, 1, 19, 331, 4085, 27631, 65719, 17060, 1, 0, 1, 1, 22, 469, 7746, 82593, 441604, 729933, 99658, 1, 0
Offset: 0
A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 4: there are 4 words of length 6 over alphabet {a,b}, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa.
A(2,3) = 7: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa.
A(3,2) = 19: aaaaaaaaa, aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, ...
0, 1, 4, 7, 10, 13, 16, ...
0, 1, 19, 61, 127, 217, 331, ...
0, 1, 98, 591, 1810, 4085, 7746, ...
0, 1, 531, 6101, 27631, 82593, 195011, ...
0, 1, 2974, 65719, 441604, 1751197, 5153626, ...
Columns k=0-10 give:
A000007,
A000012,
A047099,
A218473,
A218474,
A218475,
A218476,
A218477,
A218478,
A218479,
A218480.
-
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k,
1/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
a[0, ] = 1; a[, k_ /; k < 2] := k; a[n_, k_] := 1/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]; Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A047098
a(n) = 2*binomial(3*n, n) - Sum_{k=0..n} binomial(3*n, k).
Original entry on oeis.org
1, 2, 8, 38, 196, 1062, 5948, 34120, 199316, 1181126, 7080928, 42860534, 261542752, 1607076200, 9934255472, 61732449648, 385393229460, 2415935640198, 15200964233864, 95962904716402, 607640599286276, 3858198001960438, 24559243585545644, 156692889782067712
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1211
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Christopher R. Cornwell and Stephen P. Humphries, Counting fundamental paths in certain Garside semigroups, Journal of Knot Theory and Its Ramifications, Vol. 17 (2008), No. 02, pp. 191-211.
-
A047098 := n -> 2*binomial(3*n, n)-add(binomial(3*n, k), k=0..n);
-
Table[2Binomial[3n,n]-Sum[Binomial[3n,k],{k,0,n}],{n,0,35}] (* Harvey P. Dale, Jul 27 2011 *)
-
a(n)=if(n<0,0,polcoeff((((1+10*x-2*x^2)+(1-4*x)*sqrt(1-4*x+x*O(x^n)))/2)^n,n))
-
a(n)=if(n<0,0, 2*binomial(3*n,n)-sum(k=0,n,binomial(3*n,k)))
Clark Kimberling, Dec 08 2006, changed "T(3n,2n)" to "T(2n,n)" in the comment line, but observes that some of the other comments seem to apply to the sequence T(3n,2n) rather than to the sequence T(2n,n).
Showing 1-3 of 3 results.
Comments