cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Stephen P. Humphries

Stephen P. Humphries's wiki page.

Stephen P. Humphries has authored 14 sequences. Here are the ten most recent ones:

A225108 Number of pairs (x,y) of elements x of the symmetric group S_{n-1} and y of the symmetric group S_{n} that commute. Here the symmetric group S_{n-m} is to be thought of as the subgroup of the symmetric group S_n which stabilizes n-m+1,n-m+2,...n.

Original entry on oeis.org

1, 2, 8, 42, 288, 2280, 21600, 226800, 2701440, 35199360, 504403200, 7783776000, 130288435200, 2322678758400, 44286571929600, 894449267712000, 19144352747520000, 431093162852352000, 10224590808047616000, 253873324553232384000, 6602896050191400960000
Offset: 1

Author

Stephen P. Humphries, Jun 20 2013

Keywords

Comments

We have a formula for the number of pairs (x,y) of elements x of the symmetric group S_{n-m} and y of the symmetric group S_{n} that commute.

Examples

			When n=2 every element of S_1 commutes with every element of S_2, so we get a(2) = 2. When n=3 the following are the 8 commuting pairs:
[ Id, Id], [ Id, (1, 2)], [ Id, (1, 3, 2)], [ Id, (1, 2, 3)], [ Id, (1, 3)], [ Id, (2, 3)], [ (1, 2), (1, 2)], [ (1, 2), Id ] where Id is the identity element.
		

Programs

  • Magma
    s:=0;
    for k:=0 to n-1 do
        s:=s+Factorial(n-1)*NumberOfPartitions(n-1-k);
    end for;
    
  • Maple
    with(combinat):
    a:= n-> (n-1)! * add(numbpart(k), k=0..n-1):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jun 27 2013
  • Mathematica
    a[n_] := Sum[(n-1)! PartitionsP[n-1-k], {k, 0, n-1}]; Array[a, 25] (* Jean-François Alcover, Jan 17 2016 *)
  • PARI
    a(n)=n--!*sum(k=0,n,numbpart(n-k)) \\ Charles R Greathouse IV, Jun 28 2013

Formula

a(n) = Sum_{k=0..n-1} (n-1)!*p(n-1-k) where p is the partition function (A000041).
a(n) = A000142(n-1) * A000070(n-1). - Alois P. Heinz, Jun 27 2013

A156231 Sequence gives the Poincaré series [or Poincare series] of an ordinal Hodge algebra, or algebra with straightening law, for a ring that the braid group on four strands acts on. It is Cohen-Macaulay.

Original entry on oeis.org

1, 0, 6, 8, 24, 48, 106, 192, 369, 624, 1080, 1728, 2787, 4248, 6498, 9528, 13962, 19824, 28066, 38760, 53334, 71936, 96618, 127680, 167983, 218040, 281784, 360024, 458037, 577080, 724098, 900936, 1116636, 1373808, 1684038
Offset: 0

Author

Stephen P. Humphries, Feb 06 2009

Keywords

Examples

			For n=2 the dimension of the degree two part is 6.
		

References

  • Stephen P. Humphries, Action of some braid groups on Hodge algebras. Comm. Algebra 26 (1998), no. 4, pages 1233-1242. See Proposition 3.4

Crossrefs

A053090 is a similar Poincaré series [or Poincare series] for a ring on which the three strand braid groups acts.

Formula

G.f.: 1-(-4*x^20+8*x^19+6*x^18-12*x^17-11*x^16-2*x^15+25*x^14+10*x^13 -12*x^12) / ((1+x+x^2)^2*(1+x)^5*(1+x^2)*(1-x)^9) -(-14*x^11-15*x^10 +14*x^9+17*x^8+4*x^7-16*x^6-12*x^5+10*x^4+4*x^3-6*x^2) / ((1+x+x^2)^2*(1+x)^5*(1+x^2)*(1-x)^9).

A048274 Let G be the graph with n vertices, the i-th vertex consisting of all multiples of i <= n, where edges indicate that the vertices intersect; a(n) = |n-(number of edges of G)|.

Original entry on oeis.org

1, 1, 1, 0, 0, 3, 3, 5, 6, 9, 9, 15, 15, 18, 21, 24, 24, 30, 30, 36, 39, 42, 42, 51, 52, 55, 57, 63, 63, 75, 75, 79, 82, 85, 88, 99, 99, 102, 105, 114, 114, 126, 126, 132, 138, 141, 141, 153, 154, 160, 163, 169, 169, 178, 181, 190, 193, 196, 196, 217, 217, 220, 226
Offset: 1

Keywords

Examples

			For n=6 the vertices are {1,2,3,4,5,6},{2,4,6},{3,6},{4},{5},{6}. There are 9 = 5+3+1 edges and so a(6) = |6-9| = 3.
		

A007987 Number of irreducible words of length 2n in the free group with generators x,y such that the total degree of x and the total degree of y both equal zero.

Original entry on oeis.org

1, 0, 8, 40, 312, 2240, 17280, 134568, 1071000, 8627872, 70302888, 577920200, 4786740112, 39899052960, 334391846048, 2815803070920, 23809393390680, 202061204197632, 1720404406215720, 14690717541313128, 125775000062934552
Offset: 0

Keywords

Comments

Also, co-growth function of a certain group given by Humphries 1997 (page 211).

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)*Hypergeometric2F1[1/12, 5/12, 1,
    1728*x^4*(x - 1)*(9*x - 1)*(3*x + 1)^2/(81*x^4 - 36*x^3 - 26*x^2 - 4*x + 1)^3]/(81*x^4 - 36*x^3 - 26*x^2 - 4*x + 1)^(1/4), {x, 0,50}], x] (* G. C. Greubel, Mar 07 2017 *)

Formula

For n>0, a(n) = A168597(n) - A168597(n-1) = A002426(n)^2 - A002426(n-1)^2.
G.f.: (1-x)*hypergeom([1/12, 5/12],[1],1728*x^4*(x-1)*(9*x-1)*(3*x+1)^2/(81*x^4-36*x^3-26*x^2-4*x+1)^3)/(81*x^4-36*x^3-26*x^2-4*x+1)^(1/4). - Mark van Hoeij, Apr 10 2014

Extensions

Formula and further terms from Max Alekseyev, Jun 04 2011

A007990 Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.

Original entry on oeis.org

3, 6, 18, 42, 94, 180, 348, 602, 1047, 1692, 2737, 4194, 6426, 9450, 13863, 19716, 27933, 38616, 53160, 71748, 96396, 127440, 167704, 217740, 281439, 359654, 457617, 576630, 723592, 900396, 1116033, 1373166, 1683327, 2050212, 2488416, 3002934, 3612072
Offset: 2

Keywords

Programs

  • PARI
    Vec(x^2*(3 - 3*x^2 + 6*x^3 + 7*x^4 - 8*x^5 - 6*x^6 - 4*x^7 + 13*x^8 + 8*x^9 - 8*x^11 - 14*x^12 + 6*x^13 + 6*x^14 + 6*x^15 - 3*x^16 - 6*x^17 + 3*x^18) / ((1 - x)^9*(1 + x)^5*(1 + x^2)*(1 + x + x^2)^2) + O(x^50)) \\ Colin Barker, Aug 03 2017

Formula

The Humphries paper gives a g.f. with denominator (1-x^4)*(1-x^3)^2*(1-x^2)^4*(1-x)^2. - Ralf Stephan, Jun 11 2005
G.f.: x^2*(3 - 3*x^2 + 6*x^3 + 7*x^4 - 8*x^5 - 6*x^6 - 4*x^7 + 13*x^8 + 8*x^9 - 8*x^11 - 14*x^12 + 6*x^13 + 6*x^14 + 6*x^15 - 3*x^16 - 6*x^17 + 3*x^18) / ((1 - x)^9*(1 + x)^5*(1 + x^2)*(1 + x + x^2)^2). - Colin Barker, Aug 02 2017

Extensions

More terms from Ralf Stephan, Jun 11 2005

A007991 Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.

Original entry on oeis.org

1, 2, 7, 18, 42, 88, 176, 324, 581, 984, 1631, 2594, 4055, 6140, 9164
Offset: 2

Keywords

References

  • S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.

A007995 Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.

Original entry on oeis.org

5, 35, 235, 1380, 6711, 26630, 89695, 266305, 716460, 1780978, 4147915, 9144485, 19231895, 38819255, 75566971, 142424625, 260749275, 464984685, 809559075, 1378889190, 2301674475, 3771041860, 6072576655, 9622868805, 15021940010
Offset: 1

Keywords

Comments

The series in the Humphries paper has zeros interleaved.

Formula

a(n) = (1/87178291200) [n^14 + 91*n^13 + 3731*n^12 + 91091*n^11 + 1474473*n^10 + 16429413*n^9 + 126387833*n^8 + 659772113*n^7 + 430175746*n^6 - 19046231204*n^5 - 113904491064*n^4 + 733785439296*n^3 + 1856912273280*n^2 - 12048593356800*n + 13512635136000 ]. - Ralf Stephan, Jun 11 2005
G.f.: (-45*x^15 +520*x^14 -2705*x^13 +8340*x^12 -16875*x^11 +23430*x^10 -22710*x^9 +15480*x^8 -7695*x^7 +3300*x^6 -1586*x^5 +745*x^4 -235*x^3 +40*x^2 -5*x)/(x-1)^15. - Mark van Hoeij, Oct 21 2011

Extensions

More terms from Ralf Stephan, Jun 11 2005

A007988 Expansion of (x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)).

Original entry on oeis.org

2, 2, 5, 6, 11, 12, 20, 22, 32, 36, 49, 54, 71, 78, 98, 108, 132, 144, 173, 188, 221, 240, 278, 300, 344, 370, 419, 450, 505, 540, 602, 642, 710, 756, 831, 882, 965, 1022, 1112, 1176, 1274, 1344, 1451, 1528, 1643, 1728, 1852, 1944, 2078, 2178
Offset: 2

Keywords

Comments

Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.

Programs

  • Magma
    [Floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144): n in [2..60]]; // Vincenzo Librandi, Mar 04 2014
  • Maple
    A007988:=n->floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144); seq(A007988(n), n=2..100); # Wesley Ivan Hurt, Feb 26 2014
  • Mathematica
    Drop[CoefficientList[Series[(x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)),{x,0,60}],x],2] (* or *) LinearRecurrence[{1,2,-1,-2,-1,2,1,-1},{2,2,5,6,11,12,20,22},60] (* Harvey P. Dale, Apr 04 2013 *)

Formula

a(n) = -25/72+A000217(n+1)/12+A000292(n+1)/12+17*(n+1)/144+3*(n+1)*(-1)^n/16-2*A049347(n+2)/9-(-1)^n/8. [R. J. Mathar, Apr 23 2009]
a(2)=2, a(3)=2, a(4)=5, a(5)=6, a(6)=11, a(7)=12, a(8)=20, a(9)=22; for n>9, a(n) = a(n-1)+ 2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8). - Harvey P. Dale, Apr 04 2013
a(n) = floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144). - Tani Akinari, Jun 26 2013

Extensions

More terms from Ralf Stephan, Jun 11 2005

A007994 Poincaré series (or Poincare series) of Lie algebra associated with a certain braid group.

Original entry on oeis.org

4, 22, 110, 453, 1482, 4083, 9926, 21959, 45122, 87347, 160922, 284310, 484528, 800206, 1285462, 2014746, 3088824, 4642092, 6851430, 9946827, 14224030, 20059493, 27927926, 38422769, 52279942, 70405249, 93905842, 124126180
Offset: 1

Keywords

Comments

The series in the Humphries paper has zeros interleaved.

References

  • S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.

Programs

  • Mathematica
    CoefficientList[Series[(8 x^9 - 54 x^8 + 144 x^7 - 178 x^6 + 60 x^5 + 102 x^4 - 137 x^3 + 70 x^2 - 18 x + 4)/(x - 1)^10, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)

Formula

a(n) = (1/362880)*(n^9 + 36*n^8 + 546*n^7 + 4536*n^6 + 19425*n^5 + 37044*n^4 - 592516*n^3 - 41616*n^2 + 7104384*n - 9434880). - Ralf Stephan, Jun 11 2005
G.f.: x*(8*x^9-54*x^8+144*x^7-178*x^6+60*x^5+102*x^4-137*x^3+70*x^2-18*x+4) / (x-1)^10. - Colin Barker, Nov 28 2012

Extensions

More terms from Ralf Stephan, Jun 11 2005

A008763 Expansion of g.f.: x^4/((1-x)*(1-x^2)^2*(1-x^3)).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 38, 45, 57, 66, 81, 93, 111, 126, 148, 166, 192, 214, 244, 270, 305, 335, 375, 410, 455, 495, 546, 591, 648, 699, 762, 819, 889, 952, 1029, 1099, 1183, 1260, 1352, 1436, 1536, 1628, 1736, 1836, 1953, 2061, 2187, 2304, 2439
Offset: 0

Keywords

Comments

Number of 2 X 2 square partitions of n.
1/((1-x^2)*(1-x^4)^2*(1-x^6)) is the Molien series for 4-dimensional representation of a certain group of order 192 [Nebe, Rains, Sloane, Chap. 7].
Number of ways of writing n as n = p+q+r+s so that p >= q, p >= r, q >= s, r >= s with p, q, r, s >= 1. That is, we can partition n as
pq
rs
with p >= q, p >= r, q >= s, r >= s.
The coefficient of s(2n) in s(n,n) * s(n,n) * s(n,n) * s(n,n) is a(n+4), where s(n) is the Schur function corresponding to the trivial representation, s(n,n) is a Schur function corresponding to the two row partition and * represents the inner or Kronecker product of symmetric functions. - Mike Zabrocki, Dec 22 2005
Let F() be the Fibonacci sequence A000045. Let f([x, y, z, w]) = F(x) * F(y) * F(z) * F(w). Let N([x, y, z, w]) = x^2 + y^2 + z^2 + w^2. Let Q(k) = set of all ordered quadruples of integers [x, y, z, w] such that 1 <= x <= y <= z <= w and N([x, y, z, w]) = k. Let P(n) = set of all unordered triples {q1, q2, q3} of elements of some Q(k) such that max(w1, w2, w3) = n and f(q1) + f(q2) = f(q3). Then a(n-1) is the number of elements of P(n). - Michael Somos, Jan 21 2015
Number of partitions of 2n+2 into 4 parts with alternating parity from smallest to largest (or vice versa). - Wesley Ivan Hurt, Jan 19 2021

Examples

			a(7) = 4:
41 32 31 22
11 11 21 21
G.f. = x^4 + x^5 + 3*x^6 + 4*x^7 + 7*x^8 + 9*x^9 + 14*x^10 + 17*x^11 + ...
a(5-1) = 1 because P(5) has only one triple {[1,1,1,5], [2,2,2,4], [1,3,3,3]} of elements from Q(28) where f([1,1,1,5]) = 5, f([2,2,2,4]) = 3, f([1,3,3,3]) = 8, and 5 + 3 = 8. - _Michael Somos_, Jan 21 2015
a(6-1) = 1 because P(6) has only one triple {[1,1,2,6], [2,2,3,5], [1,3,4,4]} of elements from Q(42) where f([1,1,2,6]) = 8, f([2,2,3,5]) = 10, f([1,3,4,4]) = 18 and 8 + 10 = 18. - _Michael Somos_, Jan 21 2015
a(7-1) = 3 because P(7) has three triples. The triple {[1,1,1,7], [2,4,4,4], [3,3,3,5]} from Q(52) where f([1,1,1,7]) = 13, f([2,4,4,4]) = 27, f([3,3,3,5]) = 40 and 13 + 27 = 40. The triple {[1,2,2,7], [2,3,3,6], [1,4,4,5]} from Q(58) where f([1,2,2,7]) = 13, f([2,3,3,6]) = 32, f([1,4,4,5]) = 45 and 13 + 32 = 45. The triple {[1,1,3,7], [2,2,4,6], [1,3,5,5]} from Q(60) where f([1,1,3,7]) = 26, f([2,2,4,6]) = 24, f([1,3,5,5]) = 50 and 26 + 24 = 50. - _Michael Somos_, Jan 21 2015
		

References

  • G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
  • G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis VIII: Plane partition diamonds, Advances Applied Math., 27 (2001), 231-242 (Cor. 2.1, n=1).
  • S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.

Crossrefs

See A266769 for a version without the four leading zeros.
First differences of A097701.

Programs

  • GAP
    a:=[0,0,0,0,1,1,3,4];; for n in [9..60] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]-2*a[n-4]-a[n-5]+2*a[n-6]+a[n-7]-a[n-8]; od; a; # G. C. Greubel, Sep 10 2019
  • Magma
    K:=Rationals(); M:=MatrixAlgebra(K,4); q1:=DiagonalMatrix(M,[1,-1,1,-1]); p1:=DiagonalMatrix(M,[1,1,-1,-1]); q2:=DiagonalMatrix(M,[1,1,1,-1]); h:=M![1,1,1,1, 1,1,-1,-1, 1,-1,1,-1, 1,-1,-1,1]/2; H:=MatrixGroup<4,K|q1,q2,h,p1>; MolienSeries(H);
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0] cat Coefficients(R!( x^4/((1-x)*(1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Sep 10 2019
    
  • Maple
    a:= n-> (Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [1,2,-1,-2,-1,2,1,-1][i] else 0 fi)^n)[1,5]: seq(a(n), n=0..60); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    CoefficientList[Series[x^4/((1-x)*(1-x^2)^2*(1-x^3)), {x,0,60}], x] (* Jean-François Alcover, Mar 30 2011 *)
    LinearRecurrence[{1,2,-1,-2,-1,2,1,-1},{0,0,0,0,1,1,3,4},60] (* Harvey P. Dale, Mar 04 2012 *)
    a[ n_]:= Quotient[9(n+1)(-1)^n +2n^3 -9n +65, 144]; (* Michael Somos, Jan 21 2015 *)
    a[ n_]:= Sign[n] SeriesCoefficient[ x^4/((1-x)(1-x^2)^2(1-x^3)), {x, 0, Abs@n}]; (* Michael Somos, Jan 21 2015 *)
  • PARI
    {a(n) = (9*(n+1)*(-1)^n + 2*n^3 - 9*n + 65) \ 144}; /* Michael Somos, Jan 21 2015 */
    
  • PARI
    a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; -1,1,2,-1,-2,-1,2,1]^n*[0;0;0;0;1;1;3;4])[1,1] \\ Charles R Greathouse IV, Feb 06 2017
    
  • Sage
    def AA008763_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^4/((1-x)*(1-x^2)^2*(1-x^3))).list()
    AA008763_list(60) # G. C. Greubel, Sep 10 2019
    

Formula

Let f4(n) = number of partitions n = p+q+r+s into exactly 4 parts, with p >= q >= r >= s >= 1 (see A026810, A001400) and let g4(n) be the number with q > r (so that g4(n) = f4(n-2)). Then a(n) = f4(n) + g4(n).
a(n) = (1/144)*( 2*n^3 + 9*n*((-1)^n - 1) - 16*((n is 2 mod 3) - (n is 1 mod 3)) ).
a(n) = (1/72)*(n+3)*(n+2)*(n+1)-(1/12)*(n+2)*(n+1)+(5/144)*(n+1)+(1/16)*(n+1)*(-1)^n+(1/16)*(-1)^(n+1)+(7/144)+(2*sqrt(3)/27)*sin(2*Pi*n/3). - Richard Choulet, Nov 27 2008
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8), n>7. - Harvey P. Dale, Mar 04 2012
a(n) = floor((9*(n+1)*(-1)^n + 2*n^3 - 9*n + 65)/144). - Tani Akinari, Nov 06 2012
a(n+1) - a(n) = A008731(n-3). - R. J. Mathar, Aug 06 2013
a(n) = -a(-n) for all n in Z. - Michael Somos, Jan 21 2015
Euler transform of length 3 sequence [1, 2, 1]. - Michael Somos, Jun 26 2017

Extensions

Entry revised Dec 25 2003