cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A224697 Number A(n,k) of different ways to divide an n X k rectangle into subsquares, considering only the list of parts; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 4, 5, 7, 5, 4, 1, 1, 1, 1, 4, 7, 9, 9, 7, 4, 1, 1, 1, 1, 5, 8, 14, 11, 14, 8, 5, 1, 1, 1, 1, 5, 10, 17, 20, 20, 17, 10, 5, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2013

Keywords

Examples

			A(4,5) = 9 because there are 9 ways to divide a 4 X 5 rectangle into subsquares, considering only the list of parts: [20(1 X 1)], [16(1 X 1), 1(2 X 2)], [12(1 X 1), 2(2 X 2)], [11(1 X 1), 1(3 X 3)], [8(1 X 1), 3(2 X 2)], [7(1 X 1), 1(2 X 2), 1(3 X 3)], [4(1 X 1), 4(2 X 2)], [4(1 X 1), 1(4 X 4)], [3(1 X 1), 2(2 X 2), 1(3 X 3)].  There is no way to divide this rectangle into [2(1 X 1), 2(3 X 3)].
Square array A(n,k) begins:
  1, 1, 1,  1,  1,  1,  1,   1,   1,   1, ...
  1, 1, 1,  1,  1,  1,  1,   1,   1,   1, ...
  1, 1, 2,  2,  3,  3,  4,   4,   5,   5, ...
  1, 1, 2,  3,  4,  5,  7,   8,  10,  12, ...
  1, 1, 3,  4,  7,  9, 14,  17,  24,  29, ...
  1, 1, 3,  5,  9, 11, 20,  26,  36,  48, ...
  1, 1, 4,  7, 14, 20, 31,  47,  71,  95, ...
  1, 1, 4,  8, 17, 26, 47,  57, 102, 143, ...
  1, 1, 5, 10, 24, 36, 71, 102, 148, 238, ...
  1, 1, 5, 12, 29, 48, 95, 143, 238, 312, ...
		

Crossrefs

Columns (or rows) k=0+1, 2-5 give: A000012, A008619, A001399, A008763(n+4), A187753.
Main diagonal gives: A034295.
Cf. A225622.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then {} elif n=0 or l=[] then {[]}
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:={};
             for i from k to nops(l) while l[i]=0 do s:=s union
                 map(x->sort([x[], 1+i-k]), b(n, [l[j]$j=1..k-1,
                     1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, nops(b(n, [0$k])), nops(b(k, [0$n]))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l] > n, {}, n == 0 || l == {}, {{}}, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[x, Sort[Append[x, 1+i-k]]], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ] ]]]; s]]; a[n_, k_] := If[n >= k, Length @ b[n, Array[0&, k]], Length @ b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)

A089299 Number of square plane partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 16, 21, 31, 41, 57, 78, 108, 146, 202, 274, 375, 509, 690, 929, 1255, 1679, 2246, 2991, 3979, 5266, 6971, 9187, 12104, 15898, 20870, 27322, 35762, 46690, 60927, 79348, 103270, 134138, 174108, 225576, 291990, 377320, 487083
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2003

Keywords

Comments

Number of ways of writing n as a sum p(1,1) + p(1,2) + ... + p(1,k) + p(2,1) + ... + p(2,k) + ... + p(k,1) + ... + p(k,k) for some k so that in the square array {p(i,j)} the numbers are nonincreasing along rows and columns. All the p(i,j) are >= 1.

Examples

			a(7) = 5:
7 41 32 31 22
. 11 11 21 21
a(10) = 16 from {{10}}, {{3, 2}, {3, 2}}, {{3, 3}, {2, 2}}, {{3, 3}, {3, 1}}, {{4, 1}, {4, 1}}, {{4, 2}, {2, 2}}, {{4, 2}, {3, 1}}, {{4, 3}, {2, 1}}, {{4, 4}, {1, 1}}, {{5, 1}, {3, 1}}, {{5, 2}, {2, 1}}, {{5, 3}, {1, 1}}, {{6, 1}, {2, 1}}, {{6, 2}, {1, 1}}, {{7, 1}, {1, 1}}, {{2, 1, 1}, {1, 1, 1}, {1, 1, 1}}
From _Gus Wiseman_, Jan 16 2019: (Start)
The a(10) = 16 square plane partitions:
  [ten]
.
  [32] [33] [33] [41] [42] [42] [43] [44] [51] [52] [53] [61] [62] [71]
  [32] [22] [31] [41] [22] [31] [21] [11] [31] [21] [11] [21] [11] [11]
.
  [211]
  [111]
  [111]
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn]],And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 16 2019 *)

Formula

G.f.: Sum_{k>=0} x^(k^2) / Product_{j=1..2k-1} (1-x^j)^min(j,2k-j). - Franklin T. Adams-Watters, Jun 14 2006

Extensions

Corrected and extended by Wouter Meeussen, Dec 30 2003
a(21)-a(25) from John W. Layman, Jan 02 2004
More terms from Franklin T. Adams-Watters, Jun 14 2006
Name edited by Gus Wiseman, Jan 16 2019

A266769 Expansion of 1/((1-x)*(1-x^2)^2*(1-x^3)).

Original entry on oeis.org

1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 38, 45, 57, 66, 81, 93, 111, 126, 148, 166, 192, 214, 244, 270, 305, 335, 375, 410, 455, 495, 546, 591, 648, 699, 762, 819, 889, 952, 1029, 1099, 1183, 1260, 1352, 1436, 1536, 1628, 1736, 1836, 1953, 2061
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

This is the same as A008763 but without the four leading zeros. There are so many situations where one wants this sequence rather than A008763 that it seems appropriate for it to have its own entry.
But see A008763 (still the main entry) for numerous applications and references.
Also, Molien series for invariants of finite Coxeter group D_4 (bisected).
The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
Euler transform of length 3 sequence [1, 2, 1]. - Michael Somos, Jun 26 2017
a(n) is the number of partitions of n into parts 1, 2, and 3, where there are two sorts of parts 2. - Joerg Arndt, Jun 27 2017

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
A variant of A008763.

Programs

  • Magma
    I:=[1,1,3,4,7,9,14,17]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)-Self(n-3)-2*Self(n-4)-Self(n-5)+2*Self(n-6)+Self(n-7)-Self(n-8): n in [1..60]]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 50}], x] (* JungHwan Min, Jan 10 2016 *)
    LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {1, 1, 3, 4, 7, 9, 14, 17}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)^2*(1-x^3)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    {a(n) = (9*(n+4)*(-1)^n + 2*n^3 + 24*n^2 + 87*n + 157) \ 144}; /* Michael Somos, Jun 26 2017 */

Formula

a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) for n>7. - Vincenzo Librandi, Jan 11 2016
a(n) = -a(-8-n) for all n in Z. - Michael Somos, Jun 26 2017

A097701 Expansion of 1/((1-x)^2*(1-x^2)^2*(1-x^3)).

Original entry on oeis.org

1, 2, 5, 9, 16, 25, 39, 56, 80, 109, 147, 192, 249, 315, 396, 489, 600, 726, 874, 1040, 1232, 1446, 1690, 1960, 2265, 2600, 2975, 3385, 3840, 4335, 4881, 5472, 6120, 6819, 7581, 8400, 9289, 10241, 11270, 12369, 13552, 14812, 16164, 17600, 19136
Offset: 0

Views

Author

Ralf Stephan, Aug 24 2004

Keywords

Comments

Number of partitions of 5*n+12 or 5*n+13 into 5 parts (+-) 3 mod 5. For example, the a(3) = 9 partitions of 27 are: [18,3,2,2,2], [13,8,2,2,2], [17,3,3,2,2], [12,7,3,3,2], [7,7,7,3,3], [13,7,3,2,2], [8,8,7,2,2], [12,8,3,2,2], [8,7,7,3,2]. - Richard Turk, Apr 23 2016
Number of partitions of n into two kinds of parts 1, two kinds of parts 2, and one kind of parts 3. - Joerg Arndt, Apr 24 2016

Examples

			G.f. = 1 + 2*x + 5*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 39*x^6 + ... - _Michael Somos_, Aug 16 2023
		

Crossrefs

First differences of A002625. Partial sums of A008763.

Programs

  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=1)}, unlabeled]: subs(r=5,stack): seq(count(subs(r=3,ZL),size=m),m=3..47) ; # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-x^2)^2(1-x^3)),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,-3,-1,1,3,-1,-2,1},{1,2,5,9,16,25,39,56,80},50] (* Harvey P. Dale, May 20 2013 *)
    a[ n_] := Round[(n + 1)*(9*(-1)^n + n^3 + 17*n^2 + 95*n + 184)/288]; (* Michael Somos, Aug 16 2023*)
  • PARI
    a(n)=1/576*(2*n^4+36*n^3+224*n^2+558*n+495+(18*n+81)*(-1)^n-64*(if(n%3,1,0)))
    
  • PARI
    x='x+O('x^99); Vec(1/((1-x)^2*(1-x^2)^2*(1-x^3))) \\ Altug Alkan, Sep 18 2016

Formula

a(n) = floor((n + 1) * (9*(-1)^n + n^3 + 17*n^2 + 95*n + 184)/288 + 1/2). - Tani Akinari, Oct 07 2012
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) - a(n-4) + a(n-5) + 3*a(n-6) - a(n-7) - 2*a(n-8) + a(n-9) for n >= 9, with initial values as shown. - Harvey P. Dale, May 20 2013
a(n) = (6*n*(9*((-1)^n + 31) + n*(n*(n + 18) + 112)) + 243*(-1)^n + 128*cos((2*Pi*n)/3) + 1357)/1728. - Ilya Gutkovskiy, Apr 23 2016
a(n) = 1 + 175*n/288 + 47*n^2/144 + n^3/16 + n^4/288 + (9/16 + n/8)*floor(n/2) + 2*floor(n/3)/9 + floor((n+1)/3)/9. - Vaclav Kotesovec, Apr 24 2016
a(n) = a(-9-n) for all n in Z. - Michael Somos, Aug 16 2023

A008731 Molien series for 3-dimensional group [2, n] = *22n.

Original entry on oeis.org

1, 0, 2, 1, 3, 2, 5, 3, 7, 5, 9, 7, 12, 9, 15, 12, 18, 15, 22, 18, 26, 22, 30, 26, 35, 30, 40, 35, 45, 40, 51, 45, 57, 51, 63, 57, 70, 63, 77, 70, 84, 77, 92, 84, 100, 92, 108, 100, 117, 108, 126, 117, 135, 126, 145, 135, 155, 145, 165, 155, 176, 165, 187
Offset: 0

Views

Author

Keywords

Comments

a(n+4) is the number of solutions to the equation X + Y + Z = n such that X < Z, Y < Z, and X + Y >= Z. - Geoffrey Critzer, Jul 13 2013
Number of partitions of n into two sorts of 2, and one sort of 3. - Joerg Arndt, Jul 14 2013

Examples

			a(4) = 3 because we have:
1 + 3 + 4 = 2 + 2 + 4 = 3 + 1 + 4. - _Geoffrey Critzer_, Jul 13 2013
G.f. = 1 + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 5*x^6 + 3*x^7 + 7*x^8 + 5*x^9 + ...
		

Crossrefs

First differences of A008763.

Programs

  • GAP
    a:=[1,0,2,1,3,2,5];; for n in [8..70] do a[n]:=2*a[n-2]+a[n-3]-a[n-4]-2*a[n-5]+a[n-7]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/((1-x^2)^2*(1-x^3)), x, n+1), x, n), n = 0 .. 70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/(1-x^2)^2/(1-x^3),{x,0,70}],x] (* Geoffrey Critzer, Jul 13 2013 *)
    a[ n_] := Quotient[ (2 n^2 + If[ OddQ[n], 8 n + 6, 20 n + 48]), 70]; (* Michael Somos, Feb 02 2015 *)
    a[ n_] := Module[{m=n}, If[ n < 0, m=-7-n]; SeriesCoefficient[ 1 / ( (1 - x^2)^2 * (1 - x^3)), {x, 0, m}]]; (* Michael Somos, Feb 02 2015 *)
    LinearRecurrence[{0,2,1,-1,-2,0,1},{1,0,2,1,3,2,5},70] (* Harvey P. Dale, Feb 23 2018 *)
  • PARI
    {a(n) = (2*n^2 + if( n%2, 8*n + 6, 20*n + 48)) \ 48}; /* Michael Somos, Feb 02 2015 */
    
  • PARI
    {a(n) = if( n<0, n=-7-n); polcoeff( 1 / ((1 - x^2)^2 * (1 - x^3)) + x * O(x^n), n)}; /* Michael Somos, Feb 02 2015 */
    
  • Sage
    (1/((1-x^2)^2*(1-x^3))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

G.f.: 1/((1-x^2)^2*(1-x^3)) = 1/((1-x)^3*(1+x)^2*(1+x+x^2)).
a(n) = (1/48)*(2*n^2 + 14*n + 27 + (6*n+21)*(-1)^n - 16(n=1 mod 3)).
Euler transform of length 3 sequence [ 0, 2, 1]. - Michael Somos, Feb 02 2015
a(n) = a(-7-n) for all n in Z. - Michael Somos, Feb 02 2015
0 = a(n) + a(n+1) - a(n+2) - 2*a(n+3) - a(n+4) + a(n+5) + a(n+6) - 1 for all n in Z. - Michael Somos, Feb 02 2015
a(n+3) - a(n) = 0 if n even, (n+5)/2 otherwise. - Michael Somos, Feb 02 2015
|a(n)-a(n-1)| = A154958(n). - R. J. Mathar, Aug 11 2021

A060999 Nearest integer to (n+1)^3/9.

Original entry on oeis.org

0, 1, 3, 7, 14, 24, 38, 57, 81, 111, 148, 192, 244, 305, 375, 455, 546, 648, 762, 889, 1029, 1183, 1352, 1536, 1736, 1953, 2187, 2439, 2710, 3000, 3310, 3641, 3993, 4367, 4764, 5184, 5628, 6097, 6591, 7111, 7658, 8232, 8834, 9465, 10125, 10815, 11536
Offset: 0

Views

Author

N. J. A. Sloane, May 14 2001

Keywords

Comments

a(n) is also the number of ways to award 4n+5 bonuses to 4 teams: first, second, third and fourth satisfying 1st > 2nd > 3rd > 4th and 1st + 4th < 2nd + 3rd. - Hoang Xuan Thanh, Jun 03 2025

Examples

			x + 3*x^2 + 7*x^3 + 14*x^4 + 24*x^5 + 38*x^6 + 57*x^7 + 81*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n+1)^3/9+1/2],{n,0,50}] (* Harvey P. Dale, Jan 20 2013 *) (* or *)
    LinearRecurrence[{3, -3, 2, -3, 3, -1}, {0, 1, 3, 7, 14, 24}, 47] (* Georg Fischer, Oct 13 2020 *)
  • PARI
    a(n) = { round((n + 1)^3/9) } \\ Harry J. Smith, Jul 16 2009
    
  • PARI
    {a(n) = n++; (n^3 - kronecker(-3, n)) / 9} /* Michael Somos, Aug 12 2009 */

Formula

G.f.: x*(1+x^2)/((1-x)^3*(1-x^3)).
G.f.: x * (1 - x^4) / ((1 - x)^3 * (1 - x^2) * (1 - x^3)).
G.f.: ( (1 + 4*x + x^2) / (1 - x)^4 - 1 / (1 + x + x^2) ) / 9.
From Michael Somos, Aug 12 2009: (Start)
Euler transform of length 4 sequence [ 3, 1, 1, -1].
a(-2-n) = -a(n). (End)
E.g.f.: exp(-x/2)*(3*exp(3*x/2)*(1 + 7*x + 6*x^2 + x^3) - 3*cos(sqrt(3)*x/2)+ sqrt(3)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Sep 24 2024
From Hoang Xuan Thanh, Jun 03 2025: (Start)
a(n) = floor(((n+1)^3+1)/9).
For n>0: a(n) = A266769(2n-2). (End)

A069950 Expansion of (1+x^2)*(1+x^5)*(1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)*(1-x^10)).

Original entry on oeis.org

1, 1, 3, 4, 7, 11, 17, 25, 38, 53, 77, 105, 146, 196, 265, 350, 462, 600, 778, 994, 1270, 1601, 2016, 2514, 3126, 3857, 4745, 5797, 7063, 8554, 10331, 12411, 14871, 17734, 21093, 24986, 29519, 34747, 40801, 47746, 55746, 64884, 75353
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^2)*(1+x^5)*(1+x^8)/( (&*[1-x^j: j in [1..10]]) ) )); // G. C. Greubel, Aug 16 2022
    
  • Mathematica
    CoefficientList[Series[(1+x^2)*(1+x^5)*(1+x^8)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/ (1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10),{x,0,60}],x] (* Harvey P. Dale, Feb 25 2013 *)
  • PARI
    Vec((1+x^2)*(1+x^5)*(1+x^8)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Sage
    def A069950_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)*(1+x^5)*(1+x^8)/product(1-x^j for j in (1..10)) ).list()
    A069950_list(60) # G. C. Greubel, Aug 16 2022

Formula

G.f.: (1+x^2)*(1+x^5)*(1+x^8)/( Product_{j=1..10} (1-x^j) ). - G. C. Greubel, Aug 16 2022

A070557 Number of two-rowed partitions of length 4.

Original entry on oeis.org

1, 1, 3, 5, 10, 15, 26, 38, 60, 85, 125, 172, 243, 325, 442, 580, 767, 986, 1275, 1612, 2045, 2548, 3179, 3910, 4812, 5849, 7109, 8554, 10285, 12259, 14599, 17255, 20372, 23895, 27991, 32603, 37925, 43890, 50725, 58361, 67053, 76727, 87678, 99825, 113503
Offset: 0

Views

Author

N. J. A. Sloane, May 07 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(24, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -1, -4, -2, 1, 5, 6, 0, -4, -6, -4, 0, 6, 5, 1, -2, -4, -1, 0, 2, 1, -1][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..50); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    m = 4; n = 45; gf = 1/((1-x)*Product[1-x^k, {k, 2, m}]^2*(1-x^(m+1))) + O[x]^n; CoefficientList[gf, x] (* Jean-François Alcover, Jul 17 2015 *)

Formula

G.f.: 1/((1-x)*((1-x^2)*...*(1-x^m))^2*(1-x^(m+1))) for m = 4.

A070558 Number of two-rowed partitions of length 5.

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 28, 42, 68, 100, 151, 215, 312, 432, 605, 821, 1117, 1485, 1977, 2581, 3371, 4335, 5566, 7060, 8938, 11196, 13994, 17338, 21426, 26280, 32152, 39074, 47369, 57093, 68637, 82097, 97955, 116339, 137849, 162665, 191507
Offset: 0

Views

Author

N. J. A. Sloane, May 07 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(35, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -1, -3, -2, -2, 3, 7, 5, 1, -4, -8, -11, -1, 5, 9, 9, 5, -1, -11, -8, -4, 1, 5, 7, 3, -2, -2, -3, -1, 0, 2, 1, -1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..40); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    m = 5; n = 45; gf = 1/((1-x)*Product[1-x^k, {k, 2, m}]^2*(1-x^(m+1))) + O[x]^n; CoefficientList[gf, x] (* Jean-François Alcover, Jul 17 2015 *)

Formula

G.f.: 1/((1-x)*((1-x^2)*...*(1-x^m))^2*(1-x^(m+1))) for m = 5.

A070559 Number of two-rowed partitions of length 6.

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 29, 44, 72, 108, 166, 241, 357, 504, 720, 998, 1386, 1882, 2559, 3413, 4551, 5981, 7842, 10162, 13138, 16811, 21454, 27150, 34251, 42898, 53570, 66464, 82221, 101146, 124057, 151404, 184261, 223235, 269723, 324578
Offset: 0

Views

Author

N. J. A. Sloane, May 07 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(48, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -1, -3, -1, -2, 0, 5, 6, 5, 1, -5, -11, -9, -7, 2, 9, 15, 16, 4, -5, -13, -16, -13, -5, 4, 16, 15, 9, 2, -7, -9, -11, -5, 1, 5, 6, 5, 0, -2, -1, -3, -1, 0, 2, 1, -1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..39); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    m = 6; n = 40; gf = 1/((1-x)*Product[1-x^k, {k, 2, m}]^2*(1-x^(m+1))) + O[x]^n; CoefficientList[gf, x] (* Jean-François Alcover, Jul 17 2015 *)

Formula

G.f.: 1/((1-x)*((1-x^2)*...*(1-x^m))^2*(1-x^(m+1))) for m = 6.
Showing 1-10 of 17 results. Next