A034295
Number of different ways to divide an n X n square into sub-squares, considering only the list of parts.
Original entry on oeis.org
1, 2, 3, 7, 11, 31, 57, 148, 312, 754, 1559, 3844, 7893, 17766, 37935, 83667, 170165, 369698, 743543, 1566258, 3154006, 6424822, 12629174, 25652807, 49802454, 98130924, 189175310, 368095797
Offset: 1
From _Jon E. Schoenfield_, Sep 18 2008: (Start)
a(3) = 3 because the 3 X 3 square can be divided into sub-squares in 3 different ways: a single 3 X 3 square, a 2 X 2 square plus five 1 X 1 squares, or nine 1 X 1 squares.
There are a(5) = 11 different ways to divide a 5 X 5 square into sub-squares:
1. 25(1 X 1)
2. 1(2 X 2) + 21(1 X 1)
3. 2(2 X 2) + 17(1 X 1)
4. 3(2 X 2) + 13(1 X 1)
5. 4(2 X 2) + 9(1 X 1)
6. 1(3 X 3) + 16(1 X 1)
7. 1(3 X 3) + 1(2 X 2) + 12(1 X 1)
8. 1(3 X 3) + 2(2 X 2) + 8(1 X 1)
9. 1(3 X 3) + 3(2 X 2) + 4(1 X 1)
10. 1(4 X 4) + 9(1 X 1)
11. 1(5 X 5)
a(9) = 312 because the 9 X 9 square can be divided into 312 different combinations of sub-squares such as three 4 X 4 squares plus thirty-three 1 X 1 squares, etc. (End)
-
b:= proc(n, l) option remember; local i, k, s;
if max(l[])>n then {} elif n=0 then {0}
elif min(l[])>0 then (t->b(n-t, map(h->h-t, l)))(min(l[]))
else for k while l[k]>0 do od; s:={};
for i from k to nops(l) while l[i]=0 do s:=s union
map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
od; s
fi
end:
a:= n-> nops(b(n, [0$n])):
seq(a(n), n=1..9); # Alois P. Heinz, Apr 15 2013
-
$RecursionLimit = 1000; b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l]>n, {}, n == 0 || l == {}, {{}}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[x, Sort[Append[x, 1+i-k]]], b[n, Join[l[[1 ;; k-1]], Array[1+i-k &, i-k+1], l[[i+1 ;; -1]]]]]]; s]]; a[n_] := a[n] = b[n, Array[0&, n]] // Length; Table[Print[a[n]]; a[n], {n, 1, 12} ] (* Jean-François Alcover, Feb 18 2014, after Alois P. Heinz *)
A227690
Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles reduced for symmetry; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 6, 6, 5, 1, 1, 1, 1, 9, 10, 13, 10, 9, 1, 1, 1, 1, 12, 21, 39, 39, 21, 12, 1, 1, 1, 1, 21, 39, 115, 77, 115, 39, 21, 1, 1, 1, 1, 30, 82, 295, 521, 521, 295, 82, 30, 1, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 4, 5, 9, 12, 21, ...
1, 1, 2, 3, 6, 10, 21, 39, 82, ...
1, 1, 4, 6, 13, 39, 115, 295, 861, ...
1, 1, 5, 10, 39, 77, 521, 1985, 8038, ...
1, 1, 9, 21, 115, 521, 1494, 15129, 83609, ...
1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, ...
1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023, ...
...
A(4,3) = 6 because there are 6 ways to tile a 3 X 4 rectangle by subsquares, reduced for symmetry, i.e., where rotations and reflections are not counted as distinct:
._____ _. ._______. ._______.
| |_| | | | | |_|_|
| |_| |___|_ _| |___| |
|_____|_| |_|_|_|_| |_|_|___|
._______. ._______. ._______.
| |_|_| |_| |_| |_|_|_|_|
|___|_|_| |_|___|_| |_|_|_|_|
|_|_|_|_| |_|_|_|_| |_|_|_|_|
A360629
Triangle read by rows: T(n,k) is the number of sets of integer-sided rectangular pieces that can tile an n X k rectangle, 1 <= k <= n.
Original entry on oeis.org
1, 2, 4, 3, 10, 21, 5, 22, 73, 192, 7, 44, 190, 703, 2035, 11, 91, 510, 2287, 8581, 27407, 15, 172, 1196, 6738, 30209, 118461, 399618, 22, 326, 2895, 19160, 102092, 462114
Offset: 1
Triangle begins:
n\k| 1 2 3 4 5 6 7
---+--------------------------------------
1 | 1
2 | 2 4
3 | 3 10 21
4 | 5 22 73 192
5 | 7 44 190 703 2035
6 | 11 91 510 2287 8581 27407
7 | 15 172 1196 6738 30209 118461 399618
...
T(2,2) = 4, because a 2 X 2 rectangle can be tiled by: one 2 X 2 piece; two 1 X 2 pieces; one 1 X 2 piece and two 1 X 1 pieces; four 1 X 1 pieces.
The T(3,2) = 10 sets of pieces that can tile a 3 X 2 rectangle are shown in the table below. (Each column on the right gives a set of pieces.)
length X width | number of pieces
---------------+--------------------
2 X 3 | 1 0 0 0 0 0 0 0 0 0
2 X 2 | 0 1 1 0 0 0 0 0 0 0
1 X 3 | 0 0 0 2 1 1 0 0 0 0
1 X 2 | 0 1 0 0 1 0 3 2 1 0
1 X 1 | 0 0 2 0 1 3 0 2 4 6
T(7,7) and T(8,k) for k = 1..6 added by
Robin Visser, May 09 2025
A225542
Number T(n,k,u) of partitions of an n X k rectangle into integer-sided square parts containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,u), 1 <= k <= n, u >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1
The irregular triangle begins:
n,k\u 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
1,1 1
2,1 1
2,2 1 1
3,1 1
3,2 1 1
3,3 1 1 0 0 1
4,1 1
4,2 1 1 1
4,3 1 1 1 0 1
4,4 1 1 1 1 2 0 0 0 0 1
5,1 1
5,2 1 1 1
5,3 1 1 1 0 1 1
5,4 1 1 1 1 2 1 1 0 0 1
5,5 1 1 1 1 2 1 1 1 0 1 0 0 0 ...
...
For n = 5 and k = 4 there are 2 partitions that contain 4 isolated nodes, so T(5,4,4) = 2.
Consider that each partition is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors. Then the 2 partitions are:
1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 0 0 1 1
1 1 1 1 1 1 0 0 1 1
1 0 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
A362142
Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided squares can tile an n X k rectangle, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 3, 6, 16, 1, 1, 4, 12, 37, 140, 1, 1, 6, 24, 105, 454, 1987, 1, 1, 10, 40, 250, 1566, 9856, 62266, 1, 1, 15, 80, 726, 5670, 47394, 406168, 3899340, 1, 1, 21, 160, 1824, 18738, 223696, 2916492, 38322758, 508317004
Offset: 0
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8
---+-----------------------------------------
0 | 1
1 | 1 1
2 | 1 1 1
3 | 1 1 2 4
4 | 1 1 3 6 16
5 | 1 1 4 12 37 140
6 | 1 1 6 24 105 454 1987
7 | 1 1 10 40 250 1566 9856 62266
8 | 1 1 15 80 726 5670 47394 406168 3899340
A 5 X 4 rectangle can be tiled by 12 unit squares and 2 squares of side 2 in the following ways:
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | | | | | | |
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | | | |
+---+---+---+---+ + +---+---+ +---+ +---+ +---+---+ +
| | | | | | | | | | | | | | | |
+---+---+ + +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | |
+ +---+---+ + +---+---+ + +---+---+ + +---+---+
| | | | | | | | | | | | | | | |
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
.
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | | | | |
+---+ +---+ +---+---+---+---+ +---+---+---+---+ + +---+---+
| | | | | | | | | | | | | | | | |
+---+---+---+---+ + +---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | | | | | |
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | |
+ +---+---+ +---+ +---+ + + + + +---+---+
| | | | | | | | | | | | | | |
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
.
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | | | | | |
+---+---+ + +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | | | |
+---+---+---+---+ +---+ +---+ +---+---+---+---+ +---+---+ +
| | | | | | | | | | | | | | |
+---+---+---+---+ +---+---+---+---+ + + + + +---+---+
| | | | | | | | | | | | | | |
+ +---+---+ +---+ +---+ +---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | | | | | |
+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+
.
+---+---+---+---+
| | | |
+---+ +---+
| | | |
+---+---+---+---+
| | | | |
+---+---+---+---+
| | | |
+---+ +---+
| | | |
+---+---+---+---+
The first six of these have no symmetries, so they account for 4 tilings each. The next six have either a mirror symmetry or a rotational symmetry and account for 2 tilings each. The last has full symmetry and accounts for 1 tiling. In total there are 6*4+6*2+1 = 37 tilings. This is the maximum for a 5 X 4 rectangle, so T(5,4) = 37.
A224850
Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 1 element; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 5, 2, 12, 6, 1, 1, 3, 3, 5, 7, 17, 1, 1, 8, 3, 25, 11, 106, 44
Offset: 1
The triangle is:
n\k 1 2 3 4 5 6 7 8 ...
.
0 1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
2 1 3 2 5 3 8 ...
3 1 2 2 3 3 ...
4 3 12 5 25 ...
5 6 7 11 ...
6 17 106 ...
7 44 ...
...
T(3,5) = 2 because there are 2 different tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will only transform each tiling into itself. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
The tilings are:
._________. ._________.
|_|_|_|_|_| |_| |_|
|_|_|_|_|_| |_| |_|
|_|_|_|_|_| |_|_____|_|
A224861
Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 2 elements; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 4, 0, 0, 3, 3, 15, 0, 0, 4, 9, 38, 75, 0, 0, 9, 9, 68, 77, 604, 0, 0, 13, 21, 160, 311, 2384, 4556
Offset: 1
The triangle is:
n\k 1 2 3 4 5 6 7 8 ...
.
0 0 0 0 0 0 0 0 0 ...
1 0 0 0 0 0 0 0 ...
2 1 1 3 4 9 13 ...
3 4 3 9 9 21 ...
4 15 38 68 160 ...
5 75 77 311 ...
6 604 2384 ...
7 4556 ...
...
T(3,5) = 3 because there are 3 different sets of 2 tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will transform each tiling in a set into the other in the same set. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
An example of a tiling in each set is:
._________. ._________. ._________.
| |_| | | |_|_|_| | |_|_|
|_ _|_|_ _| |___|_| | | |_|_|
|_|_|_|_|_| |_|_|_|___| |_____|_|_|
A224867
Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 4 elements; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 21, 0, 0, 0, 10, 65, 440, 0, 0, 0, 27, 222, 1901, 14508, 0, 0, 0, 58, 676, 7716, 81119, 856559
Offset: 1
The triangle is:
n\k 1 2 3 4 5 6 7 8 ...
.
0 0 0 0 0 0 0 0 0 ...
1 0 0 0 0 0 0 0 ...
2 0 0 0 0 0 0 ...
3 1 5 10 27 58 ...
4 21 65 222 676 ...
5 440 1901 7716 ...
6 14508 81119 ...
7 856559 ...
...
T(3,5) = 5 because there are 5 different sets of 4 tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will transform each tiling in a set into another in the same set. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
An example of a tiling in each set is:
._________. ._________. ._________. ._________. ._________.
| |_|_|_| |_| |_|_| | | |_| | |_|_|_| | | |
|_ _|_|_|_| |_|_ _|_|_| |_ _|_ _|_| |___| |_| |___| |
|_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_| |_|_|___|_| |_|_|_____|
A225622
A(n,k) is the total number of parts in the set of partitions of an n X k rectangle into integer-sided squares, considering only the list of parts; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 2, 2, 3, 5, 3, 4, 9, 9, 4, 5, 15, 16, 15, 5, 6, 21, 31, 31, 21, 6, 7, 30, 47, 59, 47, 30, 7, 8, 38, 73, 102, 102, 73, 38, 8, 9, 50, 101, 170, 156, 170, 101, 50, 9, 10, 60, 142, 250, 307, 307, 250, 142, 60, 10, 11, 75, 185, 375, 460, 529, 460, 375, 185, 75, 11
Offset: 1
The square array starts:
1 2 3 4 5 6 7 8 9 10 11 12 ...
2 5 9 15 21 30 38 50 60 75 87 105 ...
3 9 16 31 47 73 101 142 185 244 305 386 ...
4 15 31 59 102 170 250 375 523 726 962 ...
5 21 47 102 156 307 460 711 1040 1517 ...
6 30 73 170 307 529 907 1474 2204 ...
7 38 101 250 460 907 1351 2484 ...
8 50 142 375 711 1474 2484 ...
9 60 185 523 1040 2204 ...
...
A(3,2) = 9 because there are 9 parts overall in the 2 partitions of a 3 X 2 rectangle into squares with integer sides. One partition comprises 6 1 X 1 squares and the other 2 1 X 1 squares and 1 2 X 2 square giving 9 parts in total.
-
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then {} elif n=0 or l=[] then {0}
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:={};
for i from k to nops(l) while l[i]=0 do s:=s union
map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
od; s
fi
end:
A:= (n, k)-> add(coeff(add(j, j=b(max(n, k),
[0$min(n, k)])), x, i), i=1..n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..15); # Alois P. Heinz, Aug 04 2013
-
$RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[{v}, v + x^(1+i-k) ], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]]]]]]; s]];A[n_, k_] := Sum[Coefficient[Sum[j, {j, b[Max[n, k], Array[0&, Min[n, k]]]}], x, i], {i, 1, n}]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 15}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
A228202
Number T(n,k,r) of partitions of an n X k X r rectangular cuboid into integer-sided cubes, considering only the list of parts; irregular triangle T(n,k,r), n >= k >= r >= 1 read by rows.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 3, 1, 3, 4, 1, 5, 6, 11, 1, 1, 3, 1, 3, 5, 1, 5, 8, 15, 1, 5, 9, 17, 19, 1, 1, 4, 1, 4, 7, 1, 7, 11, 24, 1, 7, 16, 34, 40, 1, 10, 23, 52, 80, 121
Offset: 1
The irregular triangle begins:
r 1 2 3 4 ...
n,k
1,1 1
2,1 1
2,2 1 2
3,1 1
3,2 1 2
3,3 1 2 3
4,1 1
4,2 1 3
4,3 1 3 4
4,4 1 5 6 11
5,1 1
5,2 1 3
5,3 1 3 5
5,4 1 5 8 15
5,5 1 5 9 17 19
...
T(4,4,3) = 6 because there are 6 partitions of a 4 X 4 X 3 rectangular cuboid into integer-sided cubes. The partitions are:
48 1 X 1 X 1 cubes,
40 1 X 1 X 1 cubes and 1 2 X 2 X 2 cube,
32 1 X 1 X 1 cubes and 2 2 X 2 X 2 cubes,
24 1 X 1 X 1 cubes and 3 2 X 2 X 2 cubes,
16 1 X 1 X 1 cubes and 4 2 X 2 X 2 cubes,
21 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube.
Showing 1-10 of 16 results.
Comments