A224239
Number of inequivalent ways to cut an n X n square into squares with integer sides.
Original entry on oeis.org
1, 2, 3, 13, 77, 1494, 56978, 4495023, 669203528, 187623057932, 98793520541768, 97702673827558670
Offset: 1
For n=5, the illustrations (see links) show that the 77 solutions consist of:
4 dissections each with 1 image under the group of the square, for a total of 4,
2 dissections each with 2 images under the group of the square, totaling 4,
26 dissections each with 4 images under the group of the square, totaling 104, and
45 dissections each with 8 images under the group of the square, totaling 360,
for a grand total of 77 dissections with 472 images, agreeing with A045846(5) = 472.
- Don Reble, C programs for A224239
- Don Reble, Comments on the calculation of a(10)
- N. J. A. Sloane, Illustration of the first five terms, page 1 of 4 (Each dissection is labeled with the number of its images under the symmetry group of the square. The sum of these numbers is A045846(n).)
- N. J. A. Sloane, Illustration of the first five terms, page 2 of 4 (The largest squares are drawn in red. The next-largest squares, unless of size 1, are drawn in blue.)
- N. J. A. Sloane, Illustration of the first five terms, page 3 of 4 (The largest squares are drawn in red. The next-largest squares, unless of size 1, are drawn in blue.)
- N. J. A. Sloane, Illustration of the first five terms, page 4 of 4 (The largest squares are drawn in red. The next-largest squares, unless of size 1, are drawn in blue.)
- Ed Wynn, Exhaustive generation of Mrs Perkins's quilt square dissections for low orders, 2013; arXiv:1308.5420
A359019
Number of inequivalent tilings of a 3 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 21, 39, 82, 163, 347, 717, 1533, 3232, 6927, 14748, 31645, 67690, 145322, 311535, 668997, 1435645, 3083301, 6619842, 14218066, 30533005, 65580338, 140847132, 302522253, 649759735, 1395611508, 2997573501, 6438470626, 13829057884, 29703388721, 63799607283, 137035047576, 294336860797, 632205714741
Offset: 0
a(4) is 6 because of:
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+
| | | | | | | | | | | | | | | | | |
+-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359020
Number of inequivalent tilings of a 4 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 4, 6, 13, 39, 115, 295, 861, 2403, 7048, 20377, 60008, 175978, 519589, 1532455, 4531277, 13395656, 39639758, 117301153, 347248981, 1028011708, 3043852214, 9012879842, 26689014028, 79033362580, 234045889421, 693101137571, 2052569508948
Offset: 0
a(3) is 6 because of:
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+
| | | | | | | | | | | | | | | | | |
+-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359021
Number of inequivalent tilings of a 5 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 5, 10, 39, 77, 521, 1985, 8038, 32097, 130125, 525676, 2131557, 8635656, 35017970, 141968455, 575692056, 2334344849, 9465939422, 38384559168, 155652202456, 631178976378, 2559476952229, 10378857744374, 42087027204278, 170665938023137, 692062856184512
Offset: 0
a(2) is 5 because of:
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | | | | | | | | |
+-+-+ +-+-+ + + + + +-+-+
| | | | | | | | | | |
+-+-+ + + +-+-+ +-+-+ + +
| | | | | | | | | | | |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | | | | | | | | | | |
+-+-+ + + + + +-+-+ +-+-+
| | | | | | | | | | | | |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359022
Number of inequivalent tilings of a 6 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 9, 21, 115, 521, 1494, 15129, 83609, 459957, 2551794, 14150081, 78597739
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359023
Number of inequivalent tilings of a 7 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, 6542578, 49828415
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359024
Number of inequivalent tilings of an 8 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359025
Number of inequivalent tilings of a 9 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 30, 163, 2403, 32097, 459957, 6542578, 93604244
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359026
Number of inequivalent tilings of a 10 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 51, 347, 7048, 130125, 2551794, 49828415
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A362258
Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided squares can tile an n X k rectangle, up to rotations and reflections, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 1, 1, 2, 4, 13, 20, 1, 1, 4, 8, 33, 125, 277, 1, 1, 6, 12, 72, 403, 2505, 7855, 1, 1, 9, 22, 204, 1438, 12069, 101587, 487662
Offset: 0
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8
---+----------------------------------------
0 | 1
1 | 1 1
2 | 1 1 1
3 | 1 1 1 1
4 | 1 1 2 2 4
5 | 1 1 2 4 13 20
6 | 1 1 4 8 33 125 277
7 | 1 1 6 12 72 403 2505 7855
8 | 1 1 9 22 204 1438 12069 101587 487662
See A362142 for an illustration of T(5,4) = 13.
The following table shows which sets of squares can tile the n X k rectangle in T(n,k) ways. A list x_1, ..., x_j represents a set of x_1 squares of side 1, ..., x_j squares of side j. When there are multiple solutions they are shown on separate lines. For (n,k) = (4,3), for example, the maximum number T(4,3) = 2 of tilings is obtained both for the set of 8 squares of side 1 and 1 square of side 2, and for the set of 4 squares of side 1 and 2 squares of side 2.
n\k| 1 2 3 4 5 6 7 8
---+------------------------------------------------
1 | 1
2 | 2 4
| 0,1
3 | 3 6 9
| 2,1 5,1
| 0,0,1
4 | 4 4,1 8,1 8,2
| 4,2
5 | 5 6,1 7,2 12,2 13,3
| 2,2
6 | 6 4,2 10,2 12,3 14,4 20,4
7 | 7 6,2 13,2 12,4 19,4 22,5 25,6
8 | 8 8,2 12,3 16,4 20,5 24,6 23,6,1 27,7,1
Showing 1-10 of 15 results.
Comments