cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A045846 Number of distinct ways to cut an n X n square into squares with integer sides.

Original entry on oeis.org

1, 1, 2, 6, 40, 472, 10668, 450924, 35863972, 5353011036, 1500957422222, 790347882174804, 781621363452405930, 1451740730942350766748, 5064070747064013556294032, 33176273260130056822126522884, 408199838581532754602910469192704
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the 6 dissections are: the full 3 X 3 square; 9 1 X 1 squares; one 2 X 2 square and five 1 X 1 squares (in 4 ways).
		

Crossrefs

Diagonal of A219924. - Alois P. Heinz, Dec 01 2012
See A224239 for the number of inequivalent ways.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    a:= n-> b(n, [0$n]):
    seq(a(n), n=0..11);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, 0, n == 0 || l == {}, 1, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s=0; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {i-k+1}], l[[i+1 ;; Length[l]]]]]]; s]]; a[n_] := b[n, Array[0&, n]]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

It appears lim n->oo a(n)*a(n-3)/(a(n-1)*a(n-2)) = 3.527... - Gerald McGarvey, May 03 2005
It appears that lim n->oo a(n)*a(n-2)/(a(n-1))^2 = 1.8781... - Christopher Hunt Gribble, Jun 21 2013
a(n) = (1/n^2) * Sum_{k=1..n} k^2 * A226936(n,k). - Alois P. Heinz, Jun 22 2013

Extensions

More terms from Hugo van der Sanden, Nov 06 2000
a(14)-a(15) from Alois P. Heinz, Nov 30 2012
a(16) from Steve Butler, Mar 14 2014

A034295 Number of different ways to divide an n X n square into sub-squares, considering only the list of parts.

Original entry on oeis.org

1, 2, 3, 7, 11, 31, 57, 148, 312, 754, 1559, 3844, 7893, 17766, 37935, 83667, 170165, 369698, 743543, 1566258, 3154006, 6424822, 12629174, 25652807, 49802454, 98130924, 189175310, 368095797
Offset: 1

Views

Author

Erich Friedman, Dec 11 1999

Keywords

Comments

Number of ways an n X n square can be cut into integer-sided squares: collections of integers {a_i} so that squares of length a_i tile an n X n square.
This ignores the way the squares are arranged. We are only counting the lists of parts (compare A045846).
Also applies to the partitions of an equilateral triangle of length n. - Robert G. Wilson v

Examples

			From _Jon E. Schoenfield_, Sep 18 2008: (Start)
a(3) = 3 because the 3 X 3 square can be divided into sub-squares in 3 different ways: a single 3 X 3 square, a 2 X 2 square plus five 1 X 1 squares, or nine 1 X 1 squares.
There are a(5) = 11 different ways to divide a 5 X 5 square into sub-squares:
   1. 25(1 X 1)
   2.  1(2 X 2) + 21(1 X 1)
   3.  2(2 X 2) + 17(1 X 1)
   4.  3(2 X 2) + 13(1 X 1)
   5.  4(2 X 2) +  9(1 X 1)
   6.  1(3 X 3) + 16(1 X 1)
   7.  1(3 X 3) +  1(2 X 2) + 12(1 X 1)
   8.  1(3 X 3) +  2(2 X 2) +  8(1 X 1)
   9.  1(3 X 3) +  3(2 X 2) +  4(1 X 1)
  10.  1(4 X 4) +  9(1 X 1)
  11.  1(5 X 5)
a(9) = 312 because the 9 X 9 square can be divided into 312 different combinations of sub-squares such as three 4 X 4 squares plus thirty-three 1 X 1 squares, etc. (End)
		

Crossrefs

Cf. A014544, A129668 (these both involve cubes).
Main diagonal of A224697.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s;
          if max(l[])>n then {} elif n=0 then {0}
        elif min(l[])>0 then (t->b(n-t, map(h->h-t, l)))(min(l[]))
        else for k while l[k]>0 do od; s:={};
             for i from k to nops(l) while l[i]=0 do s:=s union
                 map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
                     1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    a:= n-> nops(b(n, [0$n])):
    seq(a(n), n=1..9);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l]>n, {}, n == 0 || l == {}, {{}}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[x, Sort[Append[x, 1+i-k]]], b[n, Join[l[[1 ;; k-1]], Array[1+i-k &, i-k+1], l[[i+1 ;; -1]]]]]]; s]]; a[n_] := a[n] = b[n, Array[0&, n]] // Length; Table[Print[a[n]]; a[n], {n, 1, 12} ] (* Jean-François Alcover, Feb 18 2014, after Alois P. Heinz *)

Extensions

More terms from Sergio Pimentel, Jun 03 2008
Corrected and extended by Jon E. Schoenfield, Sep 19 2008
Edited by N. J. A. Sloane, Apr 12 2013, at the suggestion of Paolo P. Lava
a(11) corrected by Alois P. Heinz, Apr 15 2013
a(13) from Alois P. Heinz, Apr 19 2013
a(14) from Christopher Hunt Gribble, Oct 26 2013
a(15) and a(16) from Fidel I. Schaposnik, May 04 2015
a(17)-a(23) from Holger Langenau, Sep 20 2017
a(24) from Michael De Vlieger, May 04 2018, from paper written by Holger Langenau
a(25) and a(26) from Holger Langenau, May 14 2018
a(27) from Holger Langenau, Apr 15 2019
a(28) from Holger Langenau, Jun 17 2020
a(28) corrected by Holger Langenau, Jul 31 2020

A219924 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 40, 28, 13, 1, 1, 1, 1, 21, 60, 117, 117, 60, 21, 1, 1, 1, 1, 34, 129, 348, 472, 348, 129, 34, 1, 1, 1, 1, 55, 277, 1029, 1916, 1916, 1029, 277, 55, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2012

Keywords

Comments

For drawings of A(1,1), A(2,2), ..., A(5,5) see A224239.

Examples

			A(3,3) = 6, because there are 6 tilings of a 3 X 3 rectangle using integer-sided squares:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|
  |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|
  |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_|
Square array A(n,k) begins:
  1,  1,  1,   1,    1,    1,     1,      1, ...
  1,  1,  1,   1,    1,    1,     1,      1, ...
  1,  1,  2,   3,    5,    8,    13,     21, ...
  1,  1,  3,   6,   13,   28,    60,    129, ...
  1,  1,  5,  13,   40,  117,   348,   1029, ...
  1,  1,  8,  28,  117,  472,  1916,   7765, ...
  1,  1, 13,  60,  348, 1916, 10668,  59257, ...
  1,  1, 21, 129, 1029, 7765, 59257, 450924, ...
		

Crossrefs

Columns (or rows) k=0+1, 2-10 give: A000012, A000045(n+1), A002478, A054856, A054857, A219925, A219926, A219927, A219928, A219929.
Main diagonal gives A045846.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    # The following is a second version of the program that lists the actual dissections. It produces a list of pairs for each dissection:
    b:= proc(n, l, ll) local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then lprint(ll); 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l), ll)
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)],
                [ll[],[k,1+i-k]])
             od; s
          fi
        end:
    A:= (n, k)-> b(k, [0$n], []):
    A(5,5);
    # In each list [a,b] means put a square with side length b at
    leftmost possible position with upper corner in row a.  For example
    [[1,3], [4,2], [4,2], [1,2], [3,1], [3,1], [4,1], [5,1]], gives:
     ___.___.
    |     |   |
    |     |_|
    |___|_|_|
    |   |   |_|
    |_|___|_|
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1;; -1]] ] ] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from 1st Maple program *)

A227690 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles reduced for symmetry; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 6, 6, 5, 1, 1, 1, 1, 9, 10, 13, 10, 9, 1, 1, 1, 1, 12, 21, 39, 39, 21, 12, 1, 1, 1, 1, 21, 39, 115, 77, 115, 39, 21, 1, 1, 1, 1, 30, 82, 295, 521, 521, 295, 82, 30, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,  1,   1,    1,     1,      1,       1, ...
  1, 1,  1,  1,   1,    1,     1,      1,       1, ...
  1, 1,  2,  2,   4,    5,     9,     12,      21, ...
  1, 1,  2,  3,   6,   10,    21,     39,      82, ...
  1, 1,  4,  6,  13,   39,   115,    295,     861, ...
  1, 1,  5, 10,  39,   77,   521,   1985,    8038, ...
  1, 1,  9, 21, 115,  521,  1494,  15129,   83609, ...
  1, 1, 12, 39, 295, 1985, 15129,  56978,  861159, ...
  1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023, ...
...
A(4,3) = 6 because there are 6 ways to tile a 3 X 4 rectangle by subsquares, reduced for symmetry, i.e., where rotations and reflections are not counted as distinct:
   ._____ _.    ._______.    ._______.
   |     |_|    |   |   |    |   |_|_|
   |     |_|    |___|_ _|    |___|   |
   |_____|_|    |_|_|_|_|    |_|_|___|
   ._______.    ._______.    ._______.
   |   |_|_|    |_|   |_|    |_|_|_|_|
   |___|_|_|    |_|___|_|    |_|_|_|_|
   |_|_|_|_|    |_|_|_|_|    |_|_|_|_|
		

Crossrefs

A226979 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 2 elements.

Original entry on oeis.org

0, 0, 0, 2, 2, 24, 36, 344, 504, 7657, 11978, 289829
Offset: 1

Views

Author

Keywords

Examples

			For n=5, there are 2 dissections where the orbits under the symmetry group of the square, D4, have 2 elements.
For n=4, the 2 dissections can be seen in A240120 and A240121.
		

Crossrefs

Formula

A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).
A226979(n) = A240120(n) + A240121(n) + A240122(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 01 2014

A226980 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 4 elements.

Original entry on oeis.org

0, 0, 1, 6, 26, 264, 1157, 23460, 153485, 6748424, 70521609, 6791578258
Offset: 1

Views

Author

Keywords

Examples

			For n=5, there are 26 dissections where the orbits under the symmetry group of the square, D4, have 4 elements.
The 6 dissections for n=4 can be seen in A240123 and A240125.
		

Crossrefs

Formula

A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).
A226980(n) = A240123(n) + A240124(n) + A240125(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 01 2014

A227004 Irregular triangle read by rows: T(n,k) is the number of inequivalent tilings by squares of an n X n square lattice that contain k nodes unconnected to any of their neighbors.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 0, 1, 1, 3, 4, 2, 2, 0, 0, 0, 0, 1, 1, 3, 13, 20, 17, 6, 10, 5, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 6, 37, 138, 280, 300, 255, 218, 98, 43, 55, 28, 20, 11, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The n-th row contains (n-1)^2 + 1 elements.
The irregular triangle is shown below.
\ k 0 1 2 3 4 5 6 7 8 9 ...
n
1 1
2 1 1
3 1 1 0 0 1
4 1 3 4 2 2 0 0 0 0 1
5 1 3 13 20 17 6 10 5 0 1 ...
6 1 6 37 138 280 300 255 218 98 43 ...
7 1 6 75 505 2160 5410 8508 9179 8805 7917 ...

Examples

			For n = 4, there are 3 inequivalent tilings that contain 1 isolated node, so T(4,1) = 3.
A 2 X 2 square contains 1 isolated node.
Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors.  Then the 3 tilings are:
1 1 1 1 1    1 1 1 1 1    1 1 1 1 1
1 0 1 1 1    1 1 0 1 1    1 1 1 1 1
1 1 1 1 1    1 1 1 1 1    1 1 0 1 1
1 1 1 1 1    1 1 1 1 1    1 1 1 1 1
1 1 1 1 1    1 1 1 1 1    1 1 1 1 1
		

Crossrefs

Cf. A224239.

Formula

Sum_{k=0..(n-1)^2} T(n,k) = A224239(n).

A226978 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 1 element.

Original entry on oeis.org

1, 2, 2, 4, 4, 12, 8, 44, 32, 228, 148, 1632, 912, 16004, 8420, 213680, 101508, 3933380, 1691008, 98949060, 38742844, 3413919788, 1213540776, 161410887252, 52106993880
Offset: 1

Views

Author

Keywords

Comments

From Walter Trump, Dec 15 2022: (Start)
a(n) is the number of fully symmetric dissections of an n X n square into squares with integer sides.
Conjecture: For n>3 the number of dissections is a multiple of 4. (End)

Examples

			For n=5, there are 4 dissections where the orbits under the symmetry group of the square, D4, have 1 element.
For n=4, 3 dissections divide the square into uniform subsquares (of sizes 1, 2 and 4 respectively), and this is the 4th:
---------
| | | | |
---------
| |   | |
---   ---
| |   | |
---------
| | | | |
---------
		

Crossrefs

Formula

a(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*a(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 02 2014
a(13)-a(25) from Walter Trump, Dec 15 2022

A226981 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.

Original entry on oeis.org

0, 0, 0, 1, 45, 1194, 55777, 4471175, 669049507, 187616301623, 98793450008033, 97702667035688951
Offset: 1

Views

Author

Keywords

Examples

			For n=5, there are 45 dissections where the orbits under the symmetry group of the square, D4, have 8 elements.
For n=4, this is the only dissection:
---------
|   | | |
|   -----
|   |   |
-----   |
| | |   |
---------
| | | | |
---------
		

Crossrefs

Formula

A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 02 2014

A225803 Number T(n,k,u) of tilings of an n X k rectangle using integer-sided square tiles, reduced for symmetry, containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,u), 1 <= k < n, u >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 0, 1, 1, 1, 2, 2, 1, 2, 4, 0, 2, 1, 1, 4, 13, 10, 6, 3, 1, 0, 0, 1, 1, 1, 3, 4, 1, 1, 3, 8, 3, 2, 3, 0, 0, 1, 1, 6, 23, 33, 24, 15, 6, 0, 2, 2, 2, 1, 1, 6, 40, 101, 129, 79, 74, 53, 13, 9, 11, 4, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The number of entries per row is given by A225568(n>0 and n != A000217(1:)).

Examples

			The irregular triangle T(n,k,u) begins:
n,k\u  0   1   2   3   4   5   6   7   8   9  10  11  12 ...
2,1    1
3,1    1
3,2    1   1
4,1    1
4,2    1   2   1
4,3    1   2   2   0   1
5,1    1
5,2    1   2   2
5,3    1   2   4   0   2   1
5,4    1   4  13  10   6   3   1   0   0   1
6,1    1
6,2    1   3   4   1
6,3    1   3   8   3   2   3   0   0   1
6,4    1   6  23  33  24  15   6   0   2   2   1
6,5    1   6  40 101  79  74  53  13   9  11   4   0   0 ...
...
T(5,3,2) = 4 because there are 4 different sets of tilings of the 5 X 3 rectangle by integer-sided squares in which each tiling contains 2 isolated nodes.  Any sequence of group D2 operations will transform each tiling in a set into another in the same set.  Group D2 operations are:
.   the identity operation
.   rotation by 180 degrees
.   reflection about a horizontal axis through the center
.   reflection about a vertical axis through the center
A 2 X 2 square contains 1 isolated node.  Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors.  An example of a tiling in each set is:
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
   1 0 1 1    1 0 1 1    1 0 1 1    1 0 1 1
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
   1 0 1 1    1 1 0 1    1 1 1 1    1 1 1 1
   1 1 1 1    1 1 1 1    1 0 1 1    1 1 0 1
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
		

Crossrefs

Formula

T1(n,k,0) = 1, T1(n,k,1) = floor(n/2)*floor(k/2).
Showing 1-10 of 19 results. Next