cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A140108 Duplicate of A034295.

Original entry on oeis.org

1, 2, 3, 7, 11, 31, 57, 148, 312, 754, 1559, 3844
Offset: 1

Views

Author

Keywords

A045846 Number of distinct ways to cut an n X n square into squares with integer sides.

Original entry on oeis.org

1, 1, 2, 6, 40, 472, 10668, 450924, 35863972, 5353011036, 1500957422222, 790347882174804, 781621363452405930, 1451740730942350766748, 5064070747064013556294032, 33176273260130056822126522884, 408199838581532754602910469192704
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the 6 dissections are: the full 3 X 3 square; 9 1 X 1 squares; one 2 X 2 square and five 1 X 1 squares (in 4 ways).
		

Crossrefs

Diagonal of A219924. - Alois P. Heinz, Dec 01 2012
See A224239 for the number of inequivalent ways.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    a:= n-> b(n, [0$n]):
    seq(a(n), n=0..11);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, 0, n == 0 || l == {}, 1, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s=0; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {i-k+1}], l[[i+1 ;; Length[l]]]]]]; s]]; a[n_] := b[n, Array[0&, n]]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

It appears lim n->oo a(n)*a(n-3)/(a(n-1)*a(n-2)) = 3.527... - Gerald McGarvey, May 03 2005
It appears that lim n->oo a(n)*a(n-2)/(a(n-1))^2 = 1.8781... - Christopher Hunt Gribble, Jun 21 2013
a(n) = (1/n^2) * Sum_{k=1..n} k^2 * A226936(n,k). - Alois P. Heinz, Jun 22 2013

Extensions

More terms from Hugo van der Sanden, Nov 06 2000
a(14)-a(15) from Alois P. Heinz, Nov 30 2012
a(16) from Steve Butler, Mar 14 2014

A224239 Number of inequivalent ways to cut an n X n square into squares with integer sides.

Original entry on oeis.org

1, 2, 3, 13, 77, 1494, 56978, 4495023, 669203528, 187623057932, 98793520541768, 97702673827558670
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2013

Keywords

Comments

Similar to A045846, but now we do not regard dissections which differ by a rotation and/or reflection as distinct.

Examples

			For n=5, the illustrations (see links) show that the 77 solutions consist of:
4 dissections each with 1 image under the group of the square, for a total of 4,
2 dissections each with 2 images under the group of the square, totaling 4,
26 dissections each with 4 images under the group of the square, totaling 104, and
45 dissections each with 8 images under the group of the square, totaling 360,
for a grand total of 77 dissections with 472 images, agreeing with A045846(5) = 472.
		

Crossrefs

Main diagonal of A227690.

Extensions

a(6)-a(10) from Don Reble, Apr 15 2013
a(11)-a(12) from Ed Wynn, 2013. - N. J. A. Sloane, Nov 29 2013

A224697 Number A(n,k) of different ways to divide an n X k rectangle into subsquares, considering only the list of parts; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 4, 5, 7, 5, 4, 1, 1, 1, 1, 4, 7, 9, 9, 7, 4, 1, 1, 1, 1, 5, 8, 14, 11, 14, 8, 5, 1, 1, 1, 1, 5, 10, 17, 20, 20, 17, 10, 5, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2013

Keywords

Examples

			A(4,5) = 9 because there are 9 ways to divide a 4 X 5 rectangle into subsquares, considering only the list of parts: [20(1 X 1)], [16(1 X 1), 1(2 X 2)], [12(1 X 1), 2(2 X 2)], [11(1 X 1), 1(3 X 3)], [8(1 X 1), 3(2 X 2)], [7(1 X 1), 1(2 X 2), 1(3 X 3)], [4(1 X 1), 4(2 X 2)], [4(1 X 1), 1(4 X 4)], [3(1 X 1), 2(2 X 2), 1(3 X 3)].  There is no way to divide this rectangle into [2(1 X 1), 2(3 X 3)].
Square array A(n,k) begins:
  1, 1, 1,  1,  1,  1,  1,   1,   1,   1, ...
  1, 1, 1,  1,  1,  1,  1,   1,   1,   1, ...
  1, 1, 2,  2,  3,  3,  4,   4,   5,   5, ...
  1, 1, 2,  3,  4,  5,  7,   8,  10,  12, ...
  1, 1, 3,  4,  7,  9, 14,  17,  24,  29, ...
  1, 1, 3,  5,  9, 11, 20,  26,  36,  48, ...
  1, 1, 4,  7, 14, 20, 31,  47,  71,  95, ...
  1, 1, 4,  8, 17, 26, 47,  57, 102, 143, ...
  1, 1, 5, 10, 24, 36, 71, 102, 148, 238, ...
  1, 1, 5, 12, 29, 48, 95, 143, 238, 312, ...
		

Crossrefs

Columns (or rows) k=0+1, 2-5 give: A000012, A008619, A001399, A008763(n+4), A187753.
Main diagonal gives: A034295.
Cf. A225622.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then {} elif n=0 or l=[] then {[]}
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:={};
             for i from k to nops(l) while l[i]=0 do s:=s union
                 map(x->sort([x[], 1+i-k]), b(n, [l[j]$j=1..k-1,
                     1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, nops(b(n, [0$k])), nops(b(k, [0$n]))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l] > n, {}, n == 0 || l == {}, {{}}, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[x, Sort[Append[x, 1+i-k]]], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ] ]]]; s]]; a[n_, k_] := If[n >= k, Length @ b[n, Array[0&, k]], Length @ b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)

A226979 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 2 elements.

Original entry on oeis.org

0, 0, 0, 2, 2, 24, 36, 344, 504, 7657, 11978, 289829
Offset: 1

Views

Author

Keywords

Examples

			For n=5, there are 2 dissections where the orbits under the symmetry group of the square, D4, have 2 elements.
For n=4, the 2 dissections can be seen in A240120 and A240121.
		

Crossrefs

Formula

A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).
A226979(n) = A240120(n) + A240121(n) + A240122(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 01 2014

A226980 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 4 elements.

Original entry on oeis.org

0, 0, 1, 6, 26, 264, 1157, 23460, 153485, 6748424, 70521609, 6791578258
Offset: 1

Views

Author

Keywords

Examples

			For n=5, there are 26 dissections where the orbits under the symmetry group of the square, D4, have 4 elements.
The 6 dissections for n=4 can be seen in A240123 and A240125.
		

Crossrefs

Formula

A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).
A226980(n) = A240123(n) + A240124(n) + A240125(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 01 2014

A360630 Number of sets of integer-sided rectangular pieces that can tile an n X n square.

Original entry on oeis.org

1, 4, 21, 192, 2035, 27407, 399618
Offset: 1

Views

Author

Pontus von Brömssen, Feb 14 2023

Keywords

Examples

			The a(3) = 21 possible sets of pieces that can tile a 3 X 3 square are given in the table below. (Each column on the right gives a set of pieces.)
.
  length X width |            number of pieces
  ---------------+------------------------------------------
       3 X 3     | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
       2 X 3     | 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
       2 X 2     | 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
       1 X 3     | 0 1 0 0 1 1 0 0 0 3 2 2 1 1 1 1 0 0 0 0 0
       1 X 2     | 0 0 1 0 1 0 2 1 0 0 1 0 3 2 1 0 4 3 2 1 0
       1 X 1     | 0 0 1 3 0 2 1 3 5 0 1 3 0 2 4 6 1 3 5 7 9
		

Crossrefs

Main diagonal of A360629.
Cf. A034295 (square pieces).

Extensions

a(7) from Robin Visser, May 09 2025

A225542 Number T(n,k,u) of partitions of an n X k rectangle into integer-sided square parts containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,u), 1 <= k <= n, u >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The number of entries per row is given by A225568.

Examples

			The irregular triangle begins:
n,k\u 0   1   2   3   4   5   6   7   8   9  10  11  12 ...
1,1   1
2,1   1
2,2   1   1
3,1   1
3,2   1   1
3,3   1   1   0   0   1
4,1   1
4,2   1   1   1
4,3   1   1   1   0   1
4,4   1   1   1   1   2   0   0   0   0   1
5,1   1
5,2   1   1   1
5,3   1   1   1   0   1   1
5,4   1   1   1   1   2   1   1   0   0   1
5,5   1   1   1   1   2   1   1   1   0   1   0   0   0 ...
...
For n = 5 and k = 4 there are 2 partitions that contain 4 isolated nodes, so T(5,4,4) = 2.
Consider that each partition is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors.  Then the 2 partitions are:
1 1 1 1 1    1 1 1 1 1
1 0 1 0 1    1 0 0 1 1
1 1 1 1 1    1 0 0 1 1
1 0 1 0 1    1 1 1 1 1
1 1 1 1 1    1 1 1 1 1
1 1 1 1 1    1 1 1 1 1
		

Crossrefs

Formula

T(n,n,u) = A227009(n,u).
Sum_{u=1..(n-1)^2} T(n,n,u) = A034295(n).

A219610 Number of ways n can be written as sum of squares < n.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 9, 10, 10, 12, 13, 14, 14, 16, 18, 20, 21, 23, 26, 27, 28, 31, 34, 37, 38, 42, 46, 49, 50, 55, 60, 63, 66, 71, 78, 81, 84, 90, 97, 104, 107, 116, 124, 132, 135, 144, 154, 163, 169, 178, 192, 201, 209, 219, 235, 247, 256, 271, 286, 302, 311, 329, 347, 365, 378, 397, 420, 438, 455, 476, 503
Offset: 0

Views

Author

M. F. Hasler, Apr 12 2013

Keywords

Comments

Inspired by A034295, but not involving the same geometrical idea & restrictions.

Examples

			a(16)=7 since 16 = 3^2+7*1 = 3^2+2^2+3*1 = 2^2+12*1 = 2*2^2+8*1 = 3*2^2+4*1 = 4*2^2 = 16*1^2 (where 1 = 1^2).
a(17)=9 since 17 = 4^2+1 = 3^2+8*1 = 3^2+2^2+4*1 = 3^2+2*2^2 = 2^2+13*1 = 2*2^2+9*1 = 3*2^2+5*1 = 4*2^2+1 = 17*1^2.
		

Crossrefs

Cf. A034295.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i))))
        end:
    a:= proc(n) local r; r:= isqrt(n);
           b(n, r-`if`(r^2>=n, 1, 0))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 16 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1,
         If[i < 1, 0, b[n, i - 1] + If[i^2 > n, 0, b[n - i^2, i]]]];
    a[n_] := With[{r = Floor@Sqrt[n]}, b[n, r - If[r^2 >= n, 1, 0]]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 28 2022, after Alois P. Heinz *)
  • PARI
    a(n,m)={!m && n<5 && return(n!=1); m || m=sqrtint(n-1); sum(k=2,m, sum(j=1,n\k^2,a(n-j*k^2,k-1)),1)}

Formula

a(n^2+1) >= A034295(n).

A226978 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 1 element.

Original entry on oeis.org

1, 2, 2, 4, 4, 12, 8, 44, 32, 228, 148, 1632, 912, 16004, 8420, 213680, 101508, 3933380, 1691008, 98949060, 38742844, 3413919788, 1213540776, 161410887252, 52106993880
Offset: 1

Views

Author

Keywords

Comments

From Walter Trump, Dec 15 2022: (Start)
a(n) is the number of fully symmetric dissections of an n X n square into squares with integer sides.
Conjecture: For n>3 the number of dissections is a multiple of 4. (End)

Examples

			For n=5, there are 4 dissections where the orbits under the symmetry group of the square, D4, have 1 element.
For n=4, 3 dissections divide the square into uniform subsquares (of sizes 1, 2 and 4 respectively), and this is the 4th:
---------
| | | | |
---------
| |   | |
---   ---
| |   | |
---------
| | | | |
---------
		

Crossrefs

Formula

a(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*a(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 02 2014
a(13)-a(25) from Walter Trump, Dec 15 2022
Showing 1-10 of 25 results. Next