cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A225568 Number of entries in each row of the irregular triangles specified in A225777 and A225542.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 1, 3, 5, 10, 1, 3, 6, 10, 17, 1, 4, 9, 12, 17, 26, 1, 4, 9, 14, 19, 26, 37, 1, 5, 10, 19, 22, 29, 29, 50
Offset: 1

Views

Author

Keywords

Examples

			The 6th rows of A225777 and A225542, that is, when n = 3 and k = 3, both contain 5 entries, so a(6) = 5.
		

Crossrefs

A225777 Number T(n,k,u) of distinct tilings of an n X k rectangle using integer-sided square tiles containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,u), 1 <= k <= n, u >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 4, 0, 0, 1, 1, 1, 3, 1, 1, 6, 4, 0, 2, 1, 9, 16, 8, 5, 0, 0, 0, 0, 1, 1, 1, 4, 3, 1, 8, 12, 0, 3, 4, 1, 12, 37, 34, 15, 12, 4, 0, 0, 2, 1, 16, 78, 140, 88, 44, 68, 32, 0, 4, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The number of entries per row is given by A225568.

Examples

			The irregular triangle begins:
n,k\u 0   1   2   3   4   5   6   7   8   9  10  11  12 ...
1,1   1
2,1   1
2,2   1   1
3,1   1
3,2   1   2
3,3   1   4   0   0   1
4,1   1
4,2   1   3   1
4,3   1   6   4   0   2
4,4   1   9  16   8   5   0   0   0   0   1
5,1   1
5,2   1   4   3
5,3   1   8  12   0   3   4
5,4   1  12  37  34  15  12   4   0   0   2
5,5   1  16  78 140  88  44  68  32   0   4   0   0   0 ...
...
For n = 4, k = 3, there are 4 tilings that contain 2 isolated nodes, so T(4,3,2) = 4. A 2 X 2 square contains 1 isolated node.  Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors.  Then the 4 tilings are:
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
   1 0 1 1    1 0 1 1    1 1 0 1    1 1 0 1
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
   1 0 1 1    1 1 0 1    1 0 1 1    1 1 0 1
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
		

Crossrefs

Formula

T(n,k,0) = 1, T(n,k,1) = (n-1)(k-1), T(n,k,2) = (n^2(k-1) - n(2k^2+5k-13) + (k^2+13k-24))/2.
Sum_{u=1..(n-1)^2} T(n,n,u) = A045846(n).

A225622 A(n,k) is the total number of parts in the set of partitions of an n X k rectangle into integer-sided squares, considering only the list of parts; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 9, 9, 4, 5, 15, 16, 15, 5, 6, 21, 31, 31, 21, 6, 7, 30, 47, 59, 47, 30, 7, 8, 38, 73, 102, 102, 73, 38, 8, 9, 50, 101, 170, 156, 170, 101, 50, 9, 10, 60, 142, 250, 307, 307, 250, 142, 60, 10, 11, 75, 185, 375, 460, 529, 460, 375, 185, 75, 11
Offset: 1

Views

Author

Keywords

Examples

			The square array starts:
1    2    3    4    5    6    7    8    9   10   11   12 ...
2    5    9   15   21   30   38   50   60   75   87  105 ...
3    9   16   31   47   73  101  142  185  244  305  386 ...
4   15   31   59  102  170  250  375  523  726  962 ...
5   21   47  102  156  307  460  711 1040 1517 ...
6   30   73  170  307  529  907 1474 2204 ...
7   38  101  250  460  907 1351 2484 ...
8   50  142  375  711 1474 2484 ...
9   60  185  523 1040 2204 ...
...
A(3,2) = 9 because there are 9 parts overall in the 2 partitions of a 3 X 2 rectangle into squares with integer sides.  One partition comprises 6 1 X 1 squares and the other 2 1 X 1 squares and 1 2 X 2 square giving 9 parts in total.
		

Crossrefs

Diagonal = A226897.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then {} elif n=0 or l=[] then {0}
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:={};
             for i from k to nops(l) while l[i]=0 do s:=s union
                 map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
                     1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    A:= (n, k)-> add(coeff(add(j, j=b(max(n, k),
                [0$min(n, k)])), x, i), i=1..n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..15); # Alois P. Heinz, Aug 04 2013
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[{v}, v + x^(1+i-k) ], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]]]]]]; s]];A[n_, k_] := Sum[Coefficient[Sum[j, {j, b[Max[n, k], Array[0&, Min[n, k]]]}], x, i], {i, 1, n}]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 15}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)

Formula

A(n,1) = A000027(n) = n.
A(n,2) = A195014(n) = (n+1)(5n+3)/8 when n is odd
and 5n(n+2)/8 when n is even.

A225803 Number T(n,k,u) of tilings of an n X k rectangle using integer-sided square tiles, reduced for symmetry, containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,u), 1 <= k < n, u >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 0, 1, 1, 1, 2, 2, 1, 2, 4, 0, 2, 1, 1, 4, 13, 10, 6, 3, 1, 0, 0, 1, 1, 1, 3, 4, 1, 1, 3, 8, 3, 2, 3, 0, 0, 1, 1, 6, 23, 33, 24, 15, 6, 0, 2, 2, 2, 1, 1, 6, 40, 101, 129, 79, 74, 53, 13, 9, 11, 4, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The number of entries per row is given by A225568(n>0 and n != A000217(1:)).

Examples

			The irregular triangle T(n,k,u) begins:
n,k\u  0   1   2   3   4   5   6   7   8   9  10  11  12 ...
2,1    1
3,1    1
3,2    1   1
4,1    1
4,2    1   2   1
4,3    1   2   2   0   1
5,1    1
5,2    1   2   2
5,3    1   2   4   0   2   1
5,4    1   4  13  10   6   3   1   0   0   1
6,1    1
6,2    1   3   4   1
6,3    1   3   8   3   2   3   0   0   1
6,4    1   6  23  33  24  15   6   0   2   2   1
6,5    1   6  40 101  79  74  53  13   9  11   4   0   0 ...
...
T(5,3,2) = 4 because there are 4 different sets of tilings of the 5 X 3 rectangle by integer-sided squares in which each tiling contains 2 isolated nodes.  Any sequence of group D2 operations will transform each tiling in a set into another in the same set.  Group D2 operations are:
.   the identity operation
.   rotation by 180 degrees
.   reflection about a horizontal axis through the center
.   reflection about a vertical axis through the center
A 2 X 2 square contains 1 isolated node.  Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors.  An example of a tiling in each set is:
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
   1 0 1 1    1 0 1 1    1 0 1 1    1 0 1 1
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
   1 0 1 1    1 1 0 1    1 1 1 1    1 1 1 1
   1 1 1 1    1 1 1 1    1 0 1 1    1 1 0 1
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
		

Crossrefs

Formula

T1(n,k,0) = 1, T1(n,k,1) = floor(n/2)*floor(k/2).

A228594 Triangle T(n,k,r,u) read by rows: number of partitions of an n X k X r rectangular cuboid on a cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Row lengths are specified in A228726.

Examples

			T(4,4,4,8) = 2 because the 4 X 4 X 4 rectangular cuboid (in this case a cube) has 2 partitions in which there are 8 nodes unconnected to any of their neighbors.  The partitions are (8 2 X 2 X 2 cubes) and (37 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube).  The partitions and isolated nodes can be illustrated by expanding into 2 dimensions:
._______.    ._______.    ._______.    ._______.    ._______.
|   |   |    | . | . |    |   |   |    | . | . |    |   |   |
|___|___|    |___|___|    |___|___|    |___|___|    |___|___|
|   |   |    | . | . |    |   |   |    | . | . |    |   |   |
|___|___|    |___|___|    |___|___|    |___|___|    |___|___|
._______.    ._______.    ._______.    ._______.    ._______.
|     |_|    | . . |_|    | . . |_|    |     |_|    |_|_|_|_|
|     |_|    | . . |_|    | . . |_|    |     |_|    |_|_|_|_|
|_____|_|    |_____|_|    |_____|_|    |_____|_|    |_|_|_|_|
|_|_|_|_|    |_|_|_|_|    |_|_|_|_|    |_|_|_|_|    |_|_|_|_|
.
The irregular triangle begins:
      u 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ...
n k r
1,1,1   1
2,1,1   1
2,2,1   1
2,2,2   1  1
3,1,1   1
3,2,1   1
3,2,2   1  1
3,3,1   1
3,3,2   1  1
3,3,3   1  1  0  0  0  0  0  0  1
4,1,1   1
4,2,1   1
4,2,2   1  1  1
4,3,1   1
4,3,2   1  1  1
4,3,3   1  1  1  0  0  0  0  0  1
4,4,1   1
4,4,2   1  1  1  1  1
4,4,3   1  1  1  1  1  0  0  0  1
4,4,4   1  1  1  1  1  1  1  1  2  0  0  0  0  0  0  0  0 ...
5,1,1   1
5,2,1   1
5,2,2   1  1  1
5,3,1   1
5,3,2   1  1  1
5,3,3   1  1  1  0  0  0  0  0  1  1
5,4,1   1
5,4,2   1  1  1  1  1
5,4,3   1  1  1  1  1  0  0  0  1  1  1
5,4,4   1  1  1  1  1  1  1  1  2  1  1  1  1  0  0  0  0 ...
5,5,1   1
5,5,2   1  1  1  1  1
5,5,3   1  1  1  1  1  0  0  0  1  1  1  1
5,5,4   1  1  1  1  1  1  1  1  2  1  1  1  1  1  1  0  0 ...
		

Crossrefs

Row sums = A228202(n,k,r).
Cf. A225542.
Showing 1-5 of 5 results.