A225568
Number of entries in each row of the irregular triangles specified in A225777 and A225542.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 1, 3, 5, 10, 1, 3, 6, 10, 17, 1, 4, 9, 12, 17, 26, 1, 4, 9, 14, 19, 26, 37, 1, 5, 10, 19, 22, 29, 29, 50
Offset: 1
The 6th rows of A225777 and A225542, that is, when n = 3 and k = 3, both contain 5 entries, so a(6) = 5.
A225777
Number T(n,k,u) of distinct tilings of an n X k rectangle using integer-sided square tiles containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,u), 1 <= k <= n, u >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 4, 0, 0, 1, 1, 1, 3, 1, 1, 6, 4, 0, 2, 1, 9, 16, 8, 5, 0, 0, 0, 0, 1, 1, 1, 4, 3, 1, 8, 12, 0, 3, 4, 1, 12, 37, 34, 15, 12, 4, 0, 0, 2, 1, 16, 78, 140, 88, 44, 68, 32, 0, 4, 0, 0, 0, 0, 0, 0, 1
Offset: 1
The irregular triangle begins:
n,k\u 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
1,1 1
2,1 1
2,2 1 1
3,1 1
3,2 1 2
3,3 1 4 0 0 1
4,1 1
4,2 1 3 1
4,3 1 6 4 0 2
4,4 1 9 16 8 5 0 0 0 0 1
5,1 1
5,2 1 4 3
5,3 1 8 12 0 3 4
5,4 1 12 37 34 15 12 4 0 0 2
5,5 1 16 78 140 88 44 68 32 0 4 0 0 0 ...
...
For n = 4, k = 3, there are 4 tilings that contain 2 isolated nodes, so T(4,3,2) = 4. A 2 X 2 square contains 1 isolated node. Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors. Then the 4 tilings are:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A225622
A(n,k) is the total number of parts in the set of partitions of an n X k rectangle into integer-sided squares, considering only the list of parts; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 2, 2, 3, 5, 3, 4, 9, 9, 4, 5, 15, 16, 15, 5, 6, 21, 31, 31, 21, 6, 7, 30, 47, 59, 47, 30, 7, 8, 38, 73, 102, 102, 73, 38, 8, 9, 50, 101, 170, 156, 170, 101, 50, 9, 10, 60, 142, 250, 307, 307, 250, 142, 60, 10, 11, 75, 185, 375, 460, 529, 460, 375, 185, 75, 11
Offset: 1
The square array starts:
1 2 3 4 5 6 7 8 9 10 11 12 ...
2 5 9 15 21 30 38 50 60 75 87 105 ...
3 9 16 31 47 73 101 142 185 244 305 386 ...
4 15 31 59 102 170 250 375 523 726 962 ...
5 21 47 102 156 307 460 711 1040 1517 ...
6 30 73 170 307 529 907 1474 2204 ...
7 38 101 250 460 907 1351 2484 ...
8 50 142 375 711 1474 2484 ...
9 60 185 523 1040 2204 ...
...
A(3,2) = 9 because there are 9 parts overall in the 2 partitions of a 3 X 2 rectangle into squares with integer sides. One partition comprises 6 1 X 1 squares and the other 2 1 X 1 squares and 1 2 X 2 square giving 9 parts in total.
-
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then {} elif n=0 or l=[] then {0}
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:={};
for i from k to nops(l) while l[i]=0 do s:=s union
map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
od; s
fi
end:
A:= (n, k)-> add(coeff(add(j, j=b(max(n, k),
[0$min(n, k)])), x, i), i=1..n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..15); # Alois P. Heinz, Aug 04 2013
-
$RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[{v}, v + x^(1+i-k) ], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]]]]]]; s]];A[n_, k_] := Sum[Coefficient[Sum[j, {j, b[Max[n, k], Array[0&, Min[n, k]]]}], x, i], {i, 1, n}]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 15}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
A225803
Number T(n,k,u) of tilings of an n X k rectangle using integer-sided square tiles, reduced for symmetry, containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,u), 1 <= k < n, u >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 0, 1, 1, 1, 2, 2, 1, 2, 4, 0, 2, 1, 1, 4, 13, 10, 6, 3, 1, 0, 0, 1, 1, 1, 3, 4, 1, 1, 3, 8, 3, 2, 3, 0, 0, 1, 1, 6, 23, 33, 24, 15, 6, 0, 2, 2, 2, 1, 1, 6, 40, 101, 129, 79, 74, 53, 13, 9, 11, 4, 0, 0, 0, 0, 1
Offset: 1
The irregular triangle T(n,k,u) begins:
n,k\u 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
2,1 1
3,1 1
3,2 1 1
4,1 1
4,2 1 2 1
4,3 1 2 2 0 1
5,1 1
5,2 1 2 2
5,3 1 2 4 0 2 1
5,4 1 4 13 10 6 3 1 0 0 1
6,1 1
6,2 1 3 4 1
6,3 1 3 8 3 2 3 0 0 1
6,4 1 6 23 33 24 15 6 0 2 2 1
6,5 1 6 40 101 79 74 53 13 9 11 4 0 0 ...
...
T(5,3,2) = 4 because there are 4 different sets of tilings of the 5 X 3 rectangle by integer-sided squares in which each tiling contains 2 isolated nodes. Any sequence of group D2 operations will transform each tiling in a set into another in the same set. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
A 2 X 2 square contains 1 isolated node. Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors. An example of a tiling in each set is:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A228594
Triangle T(n,k,r,u) read by rows: number of partitions of an n X k X r rectangular cuboid on a cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
T(4,4,4,8) = 2 because the 4 X 4 X 4 rectangular cuboid (in this case a cube) has 2 partitions in which there are 8 nodes unconnected to any of their neighbors. The partitions are (8 2 X 2 X 2 cubes) and (37 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube). The partitions and isolated nodes can be illustrated by expanding into 2 dimensions:
._______. ._______. ._______. ._______. ._______.
| | | | . | . | | | | | . | . | | | |
|___|___| |___|___| |___|___| |___|___| |___|___|
| | | | . | . | | | | | . | . | | | |
|___|___| |___|___| |___|___| |___|___| |___|___|
._______. ._______. ._______. ._______. ._______.
| |_| | . . |_| | . . |_| | |_| |_|_|_|_|
| |_| | . . |_| | . . |_| | |_| |_|_|_|_|
|_____|_| |_____|_| |_____|_| |_____|_| |_|_|_|_|
|_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|
.
The irregular triangle begins:
u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
n k r
1,1,1 1
2,1,1 1
2,2,1 1
2,2,2 1 1
3,1,1 1
3,2,1 1
3,2,2 1 1
3,3,1 1
3,3,2 1 1
3,3,3 1 1 0 0 0 0 0 0 1
4,1,1 1
4,2,1 1
4,2,2 1 1 1
4,3,1 1
4,3,2 1 1 1
4,3,3 1 1 1 0 0 0 0 0 1
4,4,1 1
4,4,2 1 1 1 1 1
4,4,3 1 1 1 1 1 0 0 0 1
4,4,4 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 ...
5,1,1 1
5,2,1 1
5,2,2 1 1 1
5,3,1 1
5,3,2 1 1 1
5,3,3 1 1 1 0 0 0 0 0 1 1
5,4,1 1
5,4,2 1 1 1 1 1
5,4,3 1 1 1 1 1 0 0 0 1 1 1
5,4,4 1 1 1 1 1 1 1 1 2 1 1 1 1 0 0 0 0 ...
5,5,1 1
5,5,2 1 1 1 1 1
5,5,3 1 1 1 1 1 0 0 0 1 1 1 1
5,5,4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 0 0 ...
Showing 1-5 of 5 results.
Comments