cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A047099 a(n) = A047098(n)/2.

Original entry on oeis.org

1, 4, 19, 98, 531, 2974, 17060, 99658, 590563, 3540464, 21430267, 130771376, 803538100, 4967127736, 30866224824, 192696614730, 1207967820099, 7600482116932, 47981452358201, 303820299643138, 1929099000980219, 12279621792772822, 78346444891033856
Offset: 1

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

T(2*n,n)/2, with array T as in A047110.
Also given by a recurrence that features row 3 of the Pascal triangle (Mathematica code): u[0,0]=1; u[n_,k_]/;k<0 || k>n := 0; u[n_,k_]/;0<=k<=n := u[n,k] = u[n-1,k-1] + 3u[n-1,k] + 3u[n-1,k+1] + u[n-1,k+2]; u[n_]:=Sum[u[n,k],{k,0,n}]; Table[u[n],{n,0,10}]. - David Callan, Jul 22 2008
INVERT transform of (1,3,12,55,273,...), the ternary numbers A001764. - David Callan, Nov 21 2011

Crossrefs

Column k=2 of A213027.
Cf. A001764.

Programs

  • Maple
    f := n -> binomial(3*n, n) - (1/2)*add(binomial(3*n, k), k=0..n):
    seq(f(n), n=1..20);
  • Mathematica
    Table[Binomial[3 n, n] - Sum[Binomial[3 n, k], {k, 0, n}]/2, {n, 20}] (* Wesley Ivan Hurt, Jun 13 2014 *)
  • PARI
    {a(n)=local(A=1+x); A=x*exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, j))*x^m/m +x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Sep 04 2012

Formula

a(n) = binomial(3*n, n) - (1/2)*Sum_{k=0..n} binomial(3*n, k). - Vladeta Jovovic, Mar 22 2003
a(n) = A047098(n)/2. - Benoit Cloitre, Jan 28 2004
From Gary W. Adamson, Jul 28 2011: (Start)
a(n) is the upper left term in M^n, where M is the infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
3, 3, 1, 0, 0, 0, ...
3, 3, 3, 1, 0, 0, ...
1, 1, 3, 3, 1, 0, ...
0, 0, 1, 3, 3, 0, ...
0, 0, 0, 1, 3, 0, ...
... (End)
G.f.: x*exp( Sum_{n>=1} A066380*x^n/n ) where A066380(n) = Sum_{k=0..n} binomial(3*n,k). - Paul D. Hanna, Sep 04 2012
G.f.: (F(x)-1)/(2-F(x)), where F(x) is g.f. of A001764. - Vladimir Kruchinin, Jun 13 2014.
a(n) = (1/n)*Sum_{k=1..n} k*C(3*n,n-k). - Vladimir Kruchinin, Oct 03 2022
From Paul D. Hanna, Jun 06 2025: (Start)
G.f. A(x) = Series_Reversion( x*(1 + x)^2 / (1 + 2*x)^3 ).
G.f. satisfies A(x) = x*(1 + 2*A(x))^3 / (1 + A(x))^2.
G.f. satisfies A'(x) = A(x) * (1 + A(x)) * (1 + 2*A(x)) / (x*(1 - A(x))).
(End)

Extensions

Comment revised by Clark Kimberling, Dec 08 2006
Edited by N. J. A. Sloane, Dec 21 2006

A127635 Hankel transform of A047098.

Original entry on oeis.org

1, 4, 44, 1360, 118864, 29454720, 20723316480, 41430374667264, 235483137163985920, 3806579106735674587136, 175045931960590896961989632, 22902901668710944230193460535296, 8527272133354589357030560193109508096
Offset: 0

Views

Author

Paul Barry, Jan 21 2007

Keywords

Crossrefs

Formula

a(n) = 2^n*A051255(n).

A107027 Number triangle associated to the Riordan arrays (1/(1+x),x/(1+x)^k),k>=0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 20, 16, 2, 1, 2, 10, 38, 70, 32, 2, 1, 2, 12, 62, 196, 252, 64, 2, 1, 2, 14, 92, 426, 1062, 924, 128, 2, 1, 2, 16, 128, 792, 3112, 5948, 3432, 256, 2, 1, 2, 18, 170, 1326, 7302, 23686, 34120, 12870, 512, 2
Offset: 0

Views

Author

Paul Barry, May 09 2005

Keywords

Comments

As a number square read by antidiagonals, the rows represent the row sums of the inverses of the Riordan arrays (1/(1+x),x/(1+x)^k), k>=0. The rows are then given by T(n,k)=(n-1)C(n*k,k)-(n-2)*sum{j=0..k, C(n*k,j)}.

Examples

			Triangle begins
  1;
  1, 2;
  1, 2, 2;
  1, 2, 4,  2;
  1, 2, 6,  8,  2;
  1, 2, 8, 20, 16, 2;
		

Crossrefs

T(n,n) is A040000, T(n+1,n) is A000079, T(n+2,n) is A000984, T(n+3,n) is A047098.
The reverse of this triangle is A107030.
Row sums are A107028.
Diagonal sums are A107029.

Formula

Number triangle T(n, k)=if(k<=n, (n-k-1)C((n-k)*k, k)-(n-k-2)*sum{j=0..k, C((n-k)*k, j)}, 0).

A107026 Row sums of inverse of Riordan array (1/(1+x),x/(1+x)^4).

Original entry on oeis.org

1, 2, 10, 62, 426, 3112, 23686, 185684, 1488554, 12144248, 100489320, 841268078, 7112138790, 60629940152, 520591221412, 4498091003272, 39079909924522, 341193986978008, 2991881019936760, 26338436818801496, 232688056611178216
Offset: 0

Views

Author

Paul Barry, May 09 2005

Keywords

Comments

The Riordan array (1/(1+x),x/(1+x)^4) has general term (-1)^(n-k)*binomial(n+3k,4k).

Crossrefs

Programs

  • Maple
    A107026 := proc(n)
        3*binomial(4*n,n)-2*add(binomial(4*n,k),k=0..n) ;
    end proc: # R. J. Mathar, Feb 20 2015

Formula

G.f.: A(x)=y satisfies (2y)^4*x-(y+1)^3*(y-1)=0.
a(n) = 3*binomial(4*n, n) - 2*Sum_{k=0..n} binomial(4*n, k).
Conjecture: +189*n*(3*n-1)*(3*n-2)*a(n) +72*(-1034*n^3+3098*n^2-3754*n+1655)*a(n
-1) +384*(2700*n^3-12828*n^2+20426*n-10785)*a(n-2) +4096*(-1066*n^3+6666*n^2-129
50*n+7365)*a(n-3) -65536*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Feb 20 2015
Conjecture: 3*n*(3*n-1)*(3*n-2)*(22*n^2-62*n+43)*a(n) +8*(-1892*n^5+8280*n^4-13330*n^3+9660*n^2-3048*n+315)*a(n-1) +128*(4*n-7)*(2*n-3)*(4*n-5)*(22*n^2-18*n+3)*a(n-2)=0. - R. J. Mathar, Feb 20 2015

A107030 Number triangle associated with the Riordan arrays (1/(1+x),x/(1+x)^k),k>=0.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 8, 6, 2, 1, 2, 16, 20, 8, 2, 1, 2, 32, 70, 38, 10, 2, 1, 2, 64, 252, 196, 62, 12, 2, 1, 2, 128, 924, 1062, 426, 92, 14, 2, 1, 2, 256, 3432, 5948, 3112, 792, 128, 16, 2, 1, 2, 512, 12870, 34120, 23686, 7302, 1326, 170, 18, 2, 1
Offset: 0

Views

Author

Paul Barry, May 09 2005

Keywords

Examples

			Triangle begins
  1;
  2,  1;
  2,  2,  1;
  2,  4,  2, 1;
  2,  8,  6, 2, 1;
  2, 16, 20, 8, 2, 1;
		

Crossrefs

Reversal of A107027.
Row sums are A107028.
Diagonal sums are A107031.
Columns include A040000, A000079, A000984, A047098.

Formula

Number triangle T(n, k)=(k-1)*C(k(n-k), n-k)-(k-2)*sum{j=0..n-k, C(k(n-k), j)}

A213028 Number A(n,k) of 3n-length k-ary words that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 8, 1, 0, 1, 4, 21, 38, 1, 0, 1, 5, 40, 183, 196, 1, 0, 1, 6, 65, 508, 1773, 1062, 1, 0, 1, 7, 96, 1085, 7240, 18303, 5948, 1, 0, 1, 8, 133, 1986, 20425, 110524, 197157, 34120, 1, 0, 1, 9, 176, 3283, 46476, 412965, 1766416, 2189799, 199316, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2012

Keywords

Examples

			A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 8: there are 8 words of length 6 over alphabet {a,b} that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa, baaabb, bbaaab, bbbaaa, bbbbbb.
A(1,3) = 3: aaa, bbb, ccc.
A(2,3) = 21: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa, baaabb, bbaaab, bbbaaa, bbbbbb, bbbccc, bbcccb, bcccbb, caaacc, cbbbcc, ccaaac, ccbbbc, cccaaa, cccbbb, cccccc.
Square array A(n,k) begins:
  1, 1,    1,      1,       1,       1,        1, ...
  0, 1,    2,      3,       4,       5,        6, ...
  0, 1,    8,     21,      40,      65,       96, ...
  0, 1,   38,    183,     508,    1085,     1986, ...
  0, 1,  196,   1773,    7240,   20425,    46476, ...
  0, 1, 1062,  18303,  110524,  412965,  1170066, ...
  0, 1, 5948, 197157, 1766416, 8755985, 30921756, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A000567.
Columns k=0-2 give: A000007, A000012, A047098.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 1,
        k/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A[n_, k_] := If[n==0, 1, k/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

A(n,k) = k/n * Sum_{j=0..n-1} C(3*n,j) * (n-j) * (k-1)^j if n>0, k>1; A(0,k) = 1; A(n,k) = k if n>0, k<2.
A(n,k) = k * A213027(n,k) if n>0, k>1; else A(n,k) = A213027(n,k).

A307468 Cogrowth sequence for the Heisenberg group.

Original entry on oeis.org

1, 4, 28, 232, 2156, 21944, 240280, 2787320, 33820044, 424925872, 5486681368, 72398776344, 972270849512, 13247921422480, 182729003683352, 2546778437385032, 35816909974343308, 507700854900783784, 7246857513425470288, 104083322583897779656
Offset: 0

Views

Author

Igor Pak, Apr 09 2019

Keywords

Comments

This is the number of words of length 2n in the letters x,x^{-1},y,y^{-1} that equal the identity of the Heisenberg group H=.
Also, this is the number of closed walks of length 2n on the square lattice enclosing algebraic area 0 [Béguin et al.]. - Andrey Zabolotskiy, Sep 15 2021

Examples

			For n=1 the a(1)=4 words are x^{-1}x, xx^{-1}, y^{-1}y, yy^{-1}.
		

Crossrefs

Related cogrowth sequences: Z A000984, Z^2 A002894, Z^3 A002896, (Z/kZ)^*2 for k = 2..5: A126869, A047098, A107026, A304979, Richard Thompson's group F A246877. The cogrowth sequences for BS(N,N) for N = 2..10 are A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

Formula

Asymptotics: a(n) ~ (1/2) * 16^n * n^(-2).

A304979 The nonzero terms of the cogrowth sequence of (Z/5Z)^*2 = * with respect to the generating set {(x,1), (1,y)}.

Original entry on oeis.org

1, 2, 12, 92, 792, 7302, 70464, 702536, 7178568, 74771570, 790906012, 8472417384, 91724327928, 1001987961834, 11030476949952, 122247789508992, 1362840516623944, 15272530735735338, 171946029518128956, 1943927810200670820, 22059590401383177792, 251183781609841838444
Offset: 0

Views

Author

Marni Mishna, May 22 2018

Keywords

Comments

The number of paths on the Cayley graph of ((Z/5Z)^*2, {(x,1), (1,y)} which start and end at the identity.
a(n) is the number of words of length 5n over the alphabet {x,y} that reduce to the empty string upon iteratively removing factors of x^5 and y^5. For n=2, the a(2)=12 words of length 10 that reduce to the empty string are x^10, y^10, x^i y^5 x^(5-i), for i=1..5, and y^i x^5 y^(5-i), for i=1..5.

Crossrefs

Related cogrowth sequences (Z/2Z)^*2: A126869; (Z/3Z)^*2: A047098; (Z/4Z)^*2: A107026.

Programs

  • Mathematica
    terms = 22;
    A[] = 0; Do[A[x] = (1 + 4 A[x] + 6 A[x]^2 + 4 A[x]^3 + A[x]^4 + 32 x A[x]^5)/(1 + A[x])^4 + O[x]^terms // Normal, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 16 2018 *)

Formula

G.f.: A(x) satisfies 32*x*A(x)^5 - (A(x)-1)*(A(x)+1)^4 = 0.
a(n) satisfies the recurrence (2120000*(5*n+1))*(5*n+2)*(5*n+3)*(5*n+4)*a(n) + (250*(160980199*n^4 + 1129209134*n^3 + 2872721885*n^2 + 3155706646*n + 1267579560))*a(n+1) - (50*(109722203*n^4 + 959367613*n^3 + 3144281425*n^2 + 4572924587*n + 2485585548))*a(n+2) + (60*(4290021*n^4 + 51502996*n^3 + 243316306*n^2 + 532456081*n + 451079946))*a(n+3) - (3*(2673299*n^4 + 44756419*n^3 + 283571239*n^2 + 805783469*n + 866093430))*a(n+4) + (4008*(n+5))*(4*n+17)*(2*n+9)*(4*n+19)*a(n+5) = 0.
a(n) ~ 5^(5*n + 1/2) / (9 * sqrt(Pi) * n^(3/2) * 2^(8*n - 3/2)). - Vaclav Kotesovec, Oct 24 2023
a(n) = binomial(5*n,n) - 3 * Sum_{k=0..n-1} binomial(5*n,k). - Seiichi Manyama, Apr 05 2024
Showing 1-8 of 8 results.