Original entry on oeis.org
1, 4, 19, 98, 531, 2974, 17060, 99658, 590563, 3540464, 21430267, 130771376, 803538100, 4967127736, 30866224824, 192696614730, 1207967820099, 7600482116932, 47981452358201, 303820299643138, 1929099000980219, 12279621792772822, 78346444891033856
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- J.-P. Bultel and S. Giraudo, Combinatorial Hopf algebras from PROs, arXiv preprint arXiv:1406.6903 [math.CO], 2014-2016.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Noga Alon and Noah Kravitz, Counting Dope Matrices, arXiv:2205.09302 [math.CO], 2022.
-
f := n -> binomial(3*n, n) - (1/2)*add(binomial(3*n, k), k=0..n):
seq(f(n), n=1..20);
-
Table[Binomial[3 n, n] - Sum[Binomial[3 n, k], {k, 0, n}]/2, {n, 20}] (* Wesley Ivan Hurt, Jun 13 2014 *)
-
{a(n)=local(A=1+x); A=x*exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, j))*x^m/m +x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Sep 04 2012
Original entry on oeis.org
1, 4, 44, 1360, 118864, 29454720, 20723316480, 41430374667264, 235483137163985920, 3806579106735674587136, 175045931960590896961989632, 22902901668710944230193460535296, 8527272133354589357030560193109508096
Offset: 0
A107027
Number triangle associated to the Riordan arrays (1/(1+x),x/(1+x)^k),k>=0.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 20, 16, 2, 1, 2, 10, 38, 70, 32, 2, 1, 2, 12, 62, 196, 252, 64, 2, 1, 2, 14, 92, 426, 1062, 924, 128, 2, 1, 2, 16, 128, 792, 3112, 5948, 3432, 256, 2, 1, 2, 18, 170, 1326, 7302, 23686, 34120, 12870, 512, 2
Offset: 0
Triangle begins
1;
1, 2;
1, 2, 2;
1, 2, 4, 2;
1, 2, 6, 8, 2;
1, 2, 8, 20, 16, 2;
The reverse of this triangle is
A107030.
A107026
Row sums of inverse of Riordan array (1/(1+x),x/(1+x)^4).
Original entry on oeis.org
1, 2, 10, 62, 426, 3112, 23686, 185684, 1488554, 12144248, 100489320, 841268078, 7112138790, 60629940152, 520591221412, 4498091003272, 39079909924522, 341193986978008, 2991881019936760, 26338436818801496, 232688056611178216
Offset: 0
-
A107026 := proc(n)
3*binomial(4*n,n)-2*add(binomial(4*n,k),k=0..n) ;
end proc: # R. J. Mathar, Feb 20 2015
A107030
Number triangle associated with the Riordan arrays (1/(1+x),x/(1+x)^k),k>=0.
Original entry on oeis.org
1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 8, 6, 2, 1, 2, 16, 20, 8, 2, 1, 2, 32, 70, 38, 10, 2, 1, 2, 64, 252, 196, 62, 12, 2, 1, 2, 128, 924, 1062, 426, 92, 14, 2, 1, 2, 256, 3432, 5948, 3112, 792, 128, 16, 2, 1, 2, 512, 12870, 34120, 23686, 7302, 1326, 170, 18, 2, 1
Offset: 0
Triangle begins
1;
2, 1;
2, 2, 1;
2, 4, 2, 1;
2, 8, 6, 2, 1;
2, 16, 20, 8, 2, 1;
A213028
Number A(n,k) of 3n-length k-ary words that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 8, 1, 0, 1, 4, 21, 38, 1, 0, 1, 5, 40, 183, 196, 1, 0, 1, 6, 65, 508, 1773, 1062, 1, 0, 1, 7, 96, 1085, 7240, 18303, 5948, 1, 0, 1, 8, 133, 1986, 20425, 110524, 197157, 34120, 1, 0, 1, 9, 176, 3283, 46476, 412965, 1766416, 2189799, 199316, 1, 0
Offset: 0
A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 8: there are 8 words of length 6 over alphabet {a,b} that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa, baaabb, bbaaab, bbbaaa, bbbbbb.
A(1,3) = 3: aaa, bbb, ccc.
A(2,3) = 21: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa, baaabb, bbaaab, bbbaaa, bbbbbb, bbbccc, bbcccb, bcccbb, caaacc, cbbbcc, ccaaac, ccbbbc, cccaaa, cccbbb, cccccc.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 8, 21, 40, 65, 96, ...
0, 1, 38, 183, 508, 1085, 1986, ...
0, 1, 196, 1773, 7240, 20425, 46476, ...
0, 1, 1062, 18303, 110524, 412965, 1170066, ...
0, 1, 5948, 197157, 1766416, 8755985, 30921756, ...
-
A:= (n, k)-> `if`(n=0, 1,
k/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Unprotect[Power]; 0^0 = 1; A[n_, k_] := If[n==0, 1, k/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
A307468
Cogrowth sequence for the Heisenberg group.
Original entry on oeis.org
1, 4, 28, 232, 2156, 21944, 240280, 2787320, 33820044, 424925872, 5486681368, 72398776344, 972270849512, 13247921422480, 182729003683352, 2546778437385032, 35816909974343308, 507700854900783784, 7246857513425470288, 104083322583897779656
Offset: 0
For n=1 the a(1)=4 words are x^{-1}x, xx^{-1}, y^{-1}y, yy^{-1}.
- Jay Pantone, Table of n, a(n) for n = 0..200
- Cédric Béguin, Alain Valette and Andrzej Zuk, On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator, Journal of Geometry and Physics, 21 (1997), 337-356.
- D. Lind and K, Schmidt, A survey of algebraic actions of the discrete Heisenberg group, arXiv:1502.06243 [math.DS], 2015; Russian Mathematical Surveys, 70:4 (2015), 77-142.
Related cogrowth sequences: Z
A000984, Z^2
A002894, Z^3
A002896, (Z/kZ)^*2 for k = 2..5:
A126869,
A047098,
A107026,
A304979, Richard Thompson's group F
A246877. The cogrowth sequences for BS(N,N) for N = 2..10 are
A229644,
A229645,
A229646,
A229647,
A229648,
A229649,
A229650,
A229651,
A229652.
A304979
The nonzero terms of the cogrowth sequence of (Z/5Z)^*2 = * with respect to the generating set {(x,1), (1,y)}.
Original entry on oeis.org
1, 2, 12, 92, 792, 7302, 70464, 702536, 7178568, 74771570, 790906012, 8472417384, 91724327928, 1001987961834, 11030476949952, 122247789508992, 1362840516623944, 15272530735735338, 171946029518128956, 1943927810200670820, 22059590401383177792, 251183781609841838444
Offset: 0
-
terms = 22;
A[] = 0; Do[A[x] = (1 + 4 A[x] + 6 A[x]^2 + 4 A[x]^3 + A[x]^4 + 32 x A[x]^5)/(1 + A[x])^4 + O[x]^terms // Normal, {terms}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 16 2018 *)
Showing 1-8 of 8 results.
Comments