cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A213027 Number A(n,k) of 3n-length k-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 7, 19, 1, 0, 1, 1, 10, 61, 98, 1, 0, 1, 1, 13, 127, 591, 531, 1, 0, 1, 1, 16, 217, 1810, 6101, 2974, 1, 0, 1, 1, 19, 331, 4085, 27631, 65719, 17060, 1, 0, 1, 1, 22, 469, 7746, 82593, 441604, 729933, 99658, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2012

Keywords

Comments

In general, column k > 1 is asymptotic to a(n) ~ 3^(3*n+1/2) * (k-1)^(n+1) / (sqrt(Pi) * (2*k-3)^2 * 4^n * n^(3/2)). - Vaclav Kotesovec, Aug 31 2014

Examples

			A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 4: there are 4 words of length 6 over alphabet {a,b}, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa.
A(2,3) = 7: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa.
A(3,2) = 19: aaaaaaaaa, aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa.
Square array A(n,k) begins:
  1, 1,    1,     1,      1,       1,       1, ...
  0, 1,    1,     1,      1,       1,       1, ...
  0, 1,    4,     7,     10,      13,      16, ...
  0, 1,   19,    61,    127,     217,     331, ...
  0, 1,   98,   591,   1810,    4085,    7746, ...
  0, 1,  531,  6101,  27631,   82593,  195011, ...
  0, 1, 2974, 65719, 441604, 1751197, 5153626, ...
		

Crossrefs

Rows n=0-3 give: A000012, A057427, A016777(k-1), A127854(k-1).
Main diagonal gives: A218472.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k,
        1/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[0, ] = 1; a[, k_ /; k < 2] := k; a[n_, k_] := 1/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]; Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = 1/n * Sum_{j=0..n-1} C(3*n,j) * (n-j) * (k-1)^j if n>0, k>1; A(0,k) = 1; A(n,k) = k if n>0, k<2.
A(n,k) = 1/k * A213028(n,k) if n>0, k>1; else A(n,k) = A213028(n,k).

A047098 a(n) = 2*binomial(3*n, n) - Sum_{k=0..n} binomial(3*n, k).

Original entry on oeis.org

1, 2, 8, 38, 196, 1062, 5948, 34120, 199316, 1181126, 7080928, 42860534, 261542752, 1607076200, 9934255472, 61732449648, 385393229460, 2415935640198, 15200964233864, 95962904716402, 607640599286276, 3858198001960438, 24559243585545644, 156692889782067712
Offset: 0

Views

Author

Clark Kimberling, Aug 15 1998

Keywords

Comments

T(2n,n), array T as in A047089. [Corrected Dec 08 2006]
Let B_3^+ denote the semigroup with presentation . Let D=aba be the 'fundamental word'. Then this sequence is also equal to the number of words in B_3^+ equal in B_3^+ to D^n, n >= 0. - Stephen P. Humphries, Jan 20 2004
In the language of Riordan arrays, row sums of (1/(1+x), x/(1+x)^3)^-1, where (1/(1+x), x/(1+x)^3) has general term (-1)^(n-k)*binomial(n+2k, 3k). - Paul Barry, May 09 2005
Hankel transform is 2^n*A051255(n) where A051255 is the Hankel transform of C(3n,n)/(2n+1). - Paul Barry, Jan 21 2007

Crossrefs

Column k=2 of A213028.

Programs

  • Maple
    A047098 := n -> 2*binomial(3*n, n)-add(binomial(3*n, k), k=0..n);
  • Mathematica
    Table[2Binomial[3n,n]-Sum[Binomial[3n,k],{k,0,n}],{n,0,35}] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    a(n)=if(n<0,0,polcoeff((((1+10*x-2*x^2)+(1-4*x)*sqrt(1-4*x+x*O(x^n)))/2)^n,n))
    
  • PARI
    a(n)=if(n<0,0, 2*binomial(3*n,n)-sum(k=0,n,binomial(3*n,k)))

Formula

G.f. A(x)=y satisfies (8x-1)y^3-y^2+y+1=0. - Michael Somos, Jan 28 2004
Coefficient of x^n in ((1+10x-2x^2+(1-4x)^(3/2))/2)^n. - Michael Somos, Sep 25 2003
a(n) = Sum_{k = 0..n} A109971(k)*2^k; a(0) = 1, a(n) = Sum_{k = 0..n} 2^k*C(3n-k,n-k)*2*k/(3*n-k), n > 0. - Paul Barry, Jan 21 2007
Conjecture: 2*n*(2*n-1)*a(n) +(-71*n^2+112*n-48)*a(n-1) +3*(131*n^2-391*n+296)*a(n-2) -72*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
a(n) = A321957(n) + 2*binomial(3*n, n) - 8^n. - Peter Luschny, Nov 22 2018
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. - Peter Bala, Mar 05 2022

Extensions

Clark Kimberling, Dec 08 2006, changed "T(3n,2n)" to "T(2n,n)" in the comment line, but observes that some of the other comments seem to apply to the sequence T(3n,2n) rather than to the sequence T(2n,n).
Edited by N. J. A. Sloane, Dec 21 2006, replacing the old definition in terms of A047089 by an explicit formula supplied by Benoit Cloitre, Oct 25 2003.

A387033 a(n) = Sum_{k=0..n} binomial(3*n-1,k).

Original entry on oeis.org

1, 3, 16, 93, 562, 3473, 21778, 137980, 880970, 5658537, 36519556, 236618693, 1538132224, 10026362492, 65513177704, 428957009288, 2813768603466, 18486790962201, 121634649321208, 801330506737399, 5285305708097522, 34896814868837161, 230631268849574378
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(3*n-1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    Table[Sum[Binomial[3*n-1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n-1, k));
    

Formula

a(n) = [x^n] (1+x)^(3*n-1)/(1-x).
a(n) = [x^n] 1/((1-x)^(2*n-1) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n-1,k) * binomial(3*n-k-2,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n-k-2,n-k).
G.f.: 1/((2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764.
D-finite with recurrence: 24*(5*n+6)*(3*n-4)*(3*n-5)*a(n-2)-(295*n^3-451*n^2-234*n+360)*a(n-1)+2*n*(5*n+1)*(2*n-3)*a(n) = 0. - Georg Fischer, Aug 17 2025
a(n) ~ 3^(3*n - 1/2) / (sqrt(Pi*n) * 2^(2*n-1)). - Vaclav Kotesovec, Aug 27 2025

A385823 a(n) = Sum_{k=0..n} binomial(3*n-3,k).

Original entry on oeis.org

1, 1, 7, 42, 256, 1586, 9949, 63004, 401930, 2579130, 16628809, 107636402, 699030226, 4552602248, 29722279084, 194458630304, 1274628824490, 8368726082346, 55027110808177, 362301656545966, 2388274575638228, 15760514137668514, 104108685843640517, 688331413734386356
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(3*n-3,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    Table[Sum[Binomial[3*n-3,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n-3, k));
    

Formula

a(n) = [x^n] (1+x)^(3*n-3)/(1-x).
a(n) = [x^n] 1/((1-x)^(2*n-3) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n-3,k) * binomial(3*n-k-4,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n-k-4,n-k).
G.f.: 1/(g^2 * (2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764.

A386006 a(n) = Sum_{k=0..n} binomial(3*n-2,k).

Original entry on oeis.org

1, 2, 11, 64, 386, 2380, 14893, 94184, 600370, 3850756, 24821333, 160645504, 1043243132, 6794414896, 44360053772, 290244832992, 1902631226010, 12493030680180, 82153313341429, 540953389469312, 3566279609565226, 23536562549993228, 155489358646406149
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(3*n-2,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    Table[Sum[Binomial[3*n-2,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n-2, k));
    

Formula

a(n) = [x^n] (1+x)^(3*n-2)/(1-x).
a(n) = [x^n] 1/((1-x)^(2*n-2) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n-2,k) * binomial(3*n-k-3,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n-k-3,n-k).
G.f.: 1/(g * (2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764.

A127898 Inverse of Riordan array (1/(1+x)^3, x/(1+x)^3).

Original entry on oeis.org

1, 3, 1, 12, 6, 1, 55, 33, 9, 1, 273, 182, 63, 12, 1, 1428, 1020, 408, 102, 15, 1, 7752, 5814, 2565, 760, 150, 18, 1, 43263, 33649, 15939, 5313, 1265, 207, 21, 1, 246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2007

Keywords

Comments

The convolution triangle of A001764 (number of ternary trees). - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
1,
3, 1,
12, 6, 1,
55, 33, 9, 1,
273, 182, 63, 12, 1,
1428, 1020, 408, 102, 15, 1,
7752, 5814, 2565, 760, 150, 18, 1,
43263, 33649, 15939, 5313, 1265, 207, 21, 1,
246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1,
1430715, 1170585, 610740, 237510, 71253, 16443, 2842, 348, 27, 1,
8414640, 7012200, 3786588, 1553472, 503440, 129456, 26040, 3968, 432, 30, 1
		

Crossrefs

First column is A001764(n+1).
Row sums are A047099.
Inverse of A127895.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(k+1)/(n+1)*Binomial(3*n+3,n-k)))); # Muniru A Asiru, Apr 30 2018
  • Magma
    /* As triangle: */ [[(k+1)/(n+1)*Binomial(3*n+3,n-k): k in [0..n]]: n in [0..8]];  // Bruno Berselli, Jan 17 2013
    
  • Maple
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[If[k == 0, Binomial[3*n, n-k]/(2*n+1), ((k+1)/n)*Binomial[3*n, n-k -1]], {n,1,10}, {k,0,n-1}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
  • PARI
    for(n=1,10, for(k=0,n-1, print1(if(k==0, binomial(3*n, n-k)/( 2*n +1), ((k+1)/n)*binomial(3*n, n-k-1)), ", "))) \\ G. C. Greubel, Apr 29 2018
    

Formula

T(n,k) = (k+1)/(n+1)*binomial(3*n+3,n-k). - Vladimir Kruchinin, Jan 17 2013
G.f.: 1/(-y + 1/(-1 + (2*sin(1/3 *arcsin((3*sqrt(3*x))/2)))/(
sqrt(3*x))))/x. - Vladimir Kruchinin, Feb 14 2023

A064282 Triangle read by rows: T(n,k) = binomial(3n+3, k)*(n-k+1)/(n+1).

Original entry on oeis.org

1, 1, 3, 1, 6, 12, 1, 9, 33, 55, 1, 12, 63, 182, 273, 1, 15, 102, 408, 1020, 1428, 1, 18, 150, 760, 2565, 5814, 7752, 1, 21, 207, 1265, 5313, 15939, 33649, 43263, 1, 24, 273, 1950, 9750, 35880, 98670, 197340, 246675, 1, 27, 348, 2842, 16443, 71253, 237510
Offset: 0

Views

Author

Henry Bottomley, Sep 24 2001

Keywords

Crossrefs

Columns include A000012 and A008585. Right hand columns include A001764 and A006630. Row sums are A047099. Triangles A010054 (Triangle Indicator), A007318 (Pascal) and A050166 form a sequence which has this as its next member.

Programs

  • Mathematica
    Flatten[Table[Binomial[3n+3,k] (n-k+1)/(n+1),{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 26 2014 *)
  • PARI
    { n=-1; for (m=0, 10^9, for (k=0, m, a=binomial(3*m + 3, k)*(m - k + 1)/(m + 1); write("b064282.txt", n++, " ", a); if (n==1000, break)); if (n==1000, break) ) } \\ Harry J. Smith, Sep 11 2009

Formula

T(n, k) = T(n-1, k) + 3*T(n-1, k-1) + 3*T(n-1, k-2) + T(n-1, k-3) [starting with T(0,0)=1 and T(n,k)=0 if n < 0 or n < k].

A382100 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 8, 1, 1, 1, 5, 19, 35, 16, 1, 1, 1, 6, 31, 98, 126, 32, 1, 1, 1, 7, 46, 213, 531, 462, 64, 1, 1, 1, 8, 64, 396, 1556, 2974, 1716, 128, 1, 1, 1, 9, 85, 663, 3651, 11843, 17060, 6435, 256, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2025

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,     1, ...
  1,  1,   1,    1,     1,     1,     1, ...
  1,  2,   3,    4,     5,     6,     7, ...
  1,  4,  10,   19,    31,    46,    64, ...
  1,  8,  35,   98,   213,   396,   663, ...
  1, 16, 126,  531,  1556,  3651,  7391, ...
  1, 32, 462, 2974, 11843, 35232, 86488, ...
		

Crossrefs

Columns k=0..5 give A000012, A011782, A088218, A047099 (for n > 0), A107026(n)/2 (for n > 0), A304979(n)/2 (for n > 0).

Programs

  • PARI
    a(n, k) = polcoef(1/(2-sum(j=0, n, binomial(k*j+1, j)/(k*j+1)*x^j+x*O(x^n))), n);
    
  • PARI
    a(n, k) = if(n==0, 1, (binomial(k*n, n)-(k-2)*sum(j=0, n-1, binomial(k*n, j)))/2);

Formula

A(n,k) = ( binomial(k*n,n) - (k-2) * Sum_{j=0..n-1} binomial(k*n,j) )/2 for n > 0.
G.f. of column k: 1/( 1 - Series_Reversion( x/(1+x)^k ) ).
Showing 1-8 of 8 results.