A213027
Number A(n,k) of 3n-length k-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 7, 19, 1, 0, 1, 1, 10, 61, 98, 1, 0, 1, 1, 13, 127, 591, 531, 1, 0, 1, 1, 16, 217, 1810, 6101, 2974, 1, 0, 1, 1, 19, 331, 4085, 27631, 65719, 17060, 1, 0, 1, 1, 22, 469, 7746, 82593, 441604, 729933, 99658, 1, 0
Offset: 0
A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 4: there are 4 words of length 6 over alphabet {a,b}, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa.
A(2,3) = 7: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa.
A(3,2) = 19: aaaaaaaaa, aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, ...
0, 1, 4, 7, 10, 13, 16, ...
0, 1, 19, 61, 127, 217, 331, ...
0, 1, 98, 591, 1810, 4085, 7746, ...
0, 1, 531, 6101, 27631, 82593, 195011, ...
0, 1, 2974, 65719, 441604, 1751197, 5153626, ...
Columns k=0-10 give:
A000007,
A000012,
A047099,
A218473,
A218474,
A218475,
A218476,
A218477,
A218478,
A218479,
A218480.
-
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k,
1/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
a[0, ] = 1; a[, k_ /; k < 2] := k; a[n_, k_] := 1/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]; Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A047098
a(n) = 2*binomial(3*n, n) - Sum_{k=0..n} binomial(3*n, k).
Original entry on oeis.org
1, 2, 8, 38, 196, 1062, 5948, 34120, 199316, 1181126, 7080928, 42860534, 261542752, 1607076200, 9934255472, 61732449648, 385393229460, 2415935640198, 15200964233864, 95962904716402, 607640599286276, 3858198001960438, 24559243585545644, 156692889782067712
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1211
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Christopher R. Cornwell and Stephen P. Humphries, Counting fundamental paths in certain Garside semigroups, Journal of Knot Theory and Its Ramifications, Vol. 17 (2008), No. 02, pp. 191-211.
-
A047098 := n -> 2*binomial(3*n, n)-add(binomial(3*n, k), k=0..n);
-
Table[2Binomial[3n,n]-Sum[Binomial[3n,k],{k,0,n}],{n,0,35}] (* Harvey P. Dale, Jul 27 2011 *)
-
a(n)=if(n<0,0,polcoeff((((1+10*x-2*x^2)+(1-4*x)*sqrt(1-4*x+x*O(x^n)))/2)^n,n))
-
a(n)=if(n<0,0, 2*binomial(3*n,n)-sum(k=0,n,binomial(3*n,k)))
Clark Kimberling, Dec 08 2006, changed "T(3n,2n)" to "T(2n,n)" in the comment line, but observes that some of the other comments seem to apply to the sequence T(3n,2n) rather than to the sequence T(2n,n).
A387033
a(n) = Sum_{k=0..n} binomial(3*n-1,k).
Original entry on oeis.org
1, 3, 16, 93, 562, 3473, 21778, 137980, 880970, 5658537, 36519556, 236618693, 1538132224, 10026362492, 65513177704, 428957009288, 2813768603466, 18486790962201, 121634649321208, 801330506737399, 5285305708097522, 34896814868837161, 230631268849574378
Offset: 0
-
[&+[Binomial(3*n-1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Table[Sum[Binomial[3*n-1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
-
a(n) = sum(k=0, n, binomial(3*n-1, k));
A385823
a(n) = Sum_{k=0..n} binomial(3*n-3,k).
Original entry on oeis.org
1, 1, 7, 42, 256, 1586, 9949, 63004, 401930, 2579130, 16628809, 107636402, 699030226, 4552602248, 29722279084, 194458630304, 1274628824490, 8368726082346, 55027110808177, 362301656545966, 2388274575638228, 15760514137668514, 104108685843640517, 688331413734386356
Offset: 0
-
[&+[Binomial(3*n-3,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Table[Sum[Binomial[3*n-3,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
-
a(n) = sum(k=0, n, binomial(3*n-3, k));
A386006
a(n) = Sum_{k=0..n} binomial(3*n-2,k).
Original entry on oeis.org
1, 2, 11, 64, 386, 2380, 14893, 94184, 600370, 3850756, 24821333, 160645504, 1043243132, 6794414896, 44360053772, 290244832992, 1902631226010, 12493030680180, 82153313341429, 540953389469312, 3566279609565226, 23536562549993228, 155489358646406149
Offset: 0
-
[&+[Binomial(3*n-2,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Table[Sum[Binomial[3*n-2,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
-
a(n) = sum(k=0, n, binomial(3*n-2, k));
A127898
Inverse of Riordan array (1/(1+x)^3, x/(1+x)^3).
Original entry on oeis.org
1, 3, 1, 12, 6, 1, 55, 33, 9, 1, 273, 182, 63, 12, 1, 1428, 1020, 408, 102, 15, 1, 7752, 5814, 2565, 760, 150, 18, 1, 43263, 33649, 15939, 5313, 1265, 207, 21, 1, 246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1
Offset: 0
Triangle begins:
1,
3, 1,
12, 6, 1,
55, 33, 9, 1,
273, 182, 63, 12, 1,
1428, 1020, 408, 102, 15, 1,
7752, 5814, 2565, 760, 150, 18, 1,
43263, 33649, 15939, 5313, 1265, 207, 21, 1,
246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1,
1430715, 1170585, 610740, 237510, 71253, 16443, 2842, 348, 27, 1,
8414640, 7012200, 3786588, 1553472, 503440, 129456, 26040, 3968, 432, 30, 1
-
Flat(List([0..10],n->List([0..n],k->(k+1)/(n+1)*Binomial(3*n+3,n-k)))); # Muniru A Asiru, Apr 30 2018
-
/* As triangle: */ [[(k+1)/(n+1)*Binomial(3*n+3,n-k): k in [0..n]]: n in [0..8]]; // Bruno Berselli, Jan 17 2013
-
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
-
Table[If[k == 0, Binomial[3*n, n-k]/(2*n+1), ((k+1)/n)*Binomial[3*n, n-k -1]], {n,1,10}, {k,0,n-1}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
-
for(n=1,10, for(k=0,n-1, print1(if(k==0, binomial(3*n, n-k)/( 2*n +1), ((k+1)/n)*binomial(3*n, n-k-1)), ", "))) \\ G. C. Greubel, Apr 29 2018
A064282
Triangle read by rows: T(n,k) = binomial(3n+3, k)*(n-k+1)/(n+1).
Original entry on oeis.org
1, 1, 3, 1, 6, 12, 1, 9, 33, 55, 1, 12, 63, 182, 273, 1, 15, 102, 408, 1020, 1428, 1, 18, 150, 760, 2565, 5814, 7752, 1, 21, 207, 1265, 5313, 15939, 33649, 43263, 1, 24, 273, 1950, 9750, 35880, 98670, 197340, 246675, 1, 27, 348, 2842, 16443, 71253, 237510
Offset: 0
-
Flatten[Table[Binomial[3n+3,k] (n-k+1)/(n+1),{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 26 2014 *)
-
{ n=-1; for (m=0, 10^9, for (k=0, m, a=binomial(3*m + 3, k)*(m - k + 1)/(m + 1); write("b064282.txt", n++, " ", a); if (n==1000, break)); if (n==1000, break) ) } \\ Harry J. Smith, Sep 11 2009
A382100
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 8, 1, 1, 1, 5, 19, 35, 16, 1, 1, 1, 6, 31, 98, 126, 32, 1, 1, 1, 7, 46, 213, 531, 462, 64, 1, 1, 1, 8, 64, 396, 1556, 2974, 1716, 128, 1, 1, 1, 9, 85, 663, 3651, 11843, 17060, 6435, 256, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 4, 10, 19, 31, 46, 64, ...
1, 8, 35, 98, 213, 396, 663, ...
1, 16, 126, 531, 1556, 3651, 7391, ...
1, 32, 462, 2974, 11843, 35232, 86488, ...
-
a(n, k) = polcoef(1/(2-sum(j=0, n, binomial(k*j+1, j)/(k*j+1)*x^j+x*O(x^n))), n);
-
a(n, k) = if(n==0, 1, (binomial(k*n, n)-(k-2)*sum(j=0, n-1, binomial(k*n, j)))/2);
Showing 1-8 of 8 results.
Comments