cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213028 Number A(n,k) of 3n-length k-ary words that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 8, 1, 0, 1, 4, 21, 38, 1, 0, 1, 5, 40, 183, 196, 1, 0, 1, 6, 65, 508, 1773, 1062, 1, 0, 1, 7, 96, 1085, 7240, 18303, 5948, 1, 0, 1, 8, 133, 1986, 20425, 110524, 197157, 34120, 1, 0, 1, 9, 176, 3283, 46476, 412965, 1766416, 2189799, 199316, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2012

Keywords

Examples

			A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 8: there are 8 words of length 6 over alphabet {a,b} that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa, baaabb, bbaaab, bbbaaa, bbbbbb.
A(1,3) = 3: aaa, bbb, ccc.
A(2,3) = 21: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa, baaabb, bbaaab, bbbaaa, bbbbbb, bbbccc, bbcccb, bcccbb, caaacc, cbbbcc, ccaaac, ccbbbc, cccaaa, cccbbb, cccccc.
Square array A(n,k) begins:
  1, 1,    1,      1,       1,       1,        1, ...
  0, 1,    2,      3,       4,       5,        6, ...
  0, 1,    8,     21,      40,      65,       96, ...
  0, 1,   38,    183,     508,    1085,     1986, ...
  0, 1,  196,   1773,    7240,   20425,    46476, ...
  0, 1, 1062,  18303,  110524,  412965,  1170066, ...
  0, 1, 5948, 197157, 1766416, 8755985, 30921756, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A000567.
Columns k=0-2 give: A000007, A000012, A047098.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 1,
        k/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A[n_, k_] := If[n==0, 1, k/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

A(n,k) = k/n * Sum_{j=0..n-1} C(3*n,j) * (n-j) * (k-1)^j if n>0, k>1; A(0,k) = 1; A(n,k) = k if n>0, k<2.
A(n,k) = k * A213027(n,k) if n>0, k>1; else A(n,k) = A213027(n,k).