A213028 Number A(n,k) of 3n-length k-ary words that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 8, 1, 0, 1, 4, 21, 38, 1, 0, 1, 5, 40, 183, 196, 1, 0, 1, 6, 65, 508, 1773, 1062, 1, 0, 1, 7, 96, 1085, 7240, 18303, 5948, 1, 0, 1, 8, 133, 1986, 20425, 110524, 197157, 34120, 1, 0, 1, 9, 176, 3283, 46476, 412965, 1766416, 2189799, 199316, 1, 0
Offset: 0
Examples
A(0,k) = 1: the empty word. A(n,1) = 1: (aaa)^n. A(2,2) = 8: there are 8 words of length 6 over alphabet {a,b} that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa, baaabb, bbaaab, bbbaaa, bbbbbb. A(1,3) = 3: aaa, bbb, ccc. A(2,3) = 21: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa, baaabb, bbaaab, bbbaaa, bbbbbb, bbbccc, bbcccb, bcccbb, caaacc, cbbbcc, ccaaac, ccbbbc, cccaaa, cccbbb, cccccc. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 1, 8, 21, 40, 65, 96, ... 0, 1, 38, 183, 508, 1085, 1986, ... 0, 1, 196, 1773, 7240, 20425, 46476, ... 0, 1, 1062, 18303, 110524, 412965, 1170066, ... 0, 1, 5948, 197157, 1766416, 8755985, 30921756, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> `if`(n=0, 1, k/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1)): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
Unprotect[Power]; 0^0 = 1; A[n_, k_] := If[n==0, 1, k/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)