cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213046 Convolution of Lucas numbers and positive integers repeated (A000032 and A008619).

Original entry on oeis.org

2, 3, 8, 13, 25, 41, 71, 116, 193, 314, 514, 834, 1356, 2197, 3562, 5767, 9339, 15115, 24465, 39590, 64067, 103668, 167748, 271428, 439190, 710631, 1149836, 1860481, 3010333, 4870829, 7881179, 12752024, 20633221, 33385262, 54018502, 87403782, 141422304
Offset: 0

Views

Author

Clark Kimberling, Jun 10 2012

Keywords

Crossrefs

Cf. A213500.

Programs

  • Magma
    /* By definition */ A008619:=func; [&+[A008619(i)*Lucas(n-i): i in [0..n]]: n in [0..34]];
    
  • Mathematica
    f[x_] := (1 + x) (1 - x)^2; g[x] := 1 - x - x^2;
    s = Normal[Series[(2 - x)/(f[x] g[x]), {x, 0, 60}]]
    CoefficientList[s, x]  (* A213046 *)
    LinearRecurrence[{2,1,-3,0,1},{2,3,8,13,25},40] (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,-3,1,2]^n*[2;3;8;13;25])[1,1] \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    Vec((-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)) + O(x^60)) \\ Colin Barker, Feb 09 2017

Formula

a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5).
G.f.: (-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)).
a(n) = (-9/4 + (3*(-1)^n)/4 + (2^(-n)*((1-t)^n*(-5+2*t) + (1+t)^n*(5+2*t)))/t + (-1-n)/2) where t=sqrt(5). - Colin Barker, Feb 09 2017