A213046 Convolution of Lucas numbers and positive integers repeated (A000032 and A008619).
2, 3, 8, 13, 25, 41, 71, 116, 193, 314, 514, 834, 1356, 2197, 3562, 5767, 9339, 15115, 24465, 39590, 64067, 103668, 167748, 271428, 439190, 710631, 1149836, 1860481, 3010333, 4870829, 7881179, 12752024, 20633221, 33385262, 54018502, 87403782, 141422304
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-3,0,1).
Crossrefs
Cf. A213500.
Programs
-
Magma
/* By definition */ A008619:=func
; [&+[A008619(i)*Lucas(n-i): i in [0..n]]: n in [0..34]]; -
Mathematica
f[x_] := (1 + x) (1 - x)^2; g[x] := 1 - x - x^2; s = Normal[Series[(2 - x)/(f[x] g[x]), {x, 0, 60}]] CoefficientList[s, x] (* A213046 *) LinearRecurrence[{2,1,-3,0,1},{2,3,8,13,25},40] (* Harvey P. Dale, Aug 31 2023 *)
-
PARI
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,-3,1,2]^n*[2;3;8;13;25])[1,1] \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
Vec((-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)) + O(x^60)) \\ Colin Barker, Feb 09 2017
Formula
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5).
G.f.: (-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)).
a(n) = (-9/4 + (3*(-1)^n)/4 + (2^(-n)*((1-t)^n*(-5+2*t) + (1+t)^n*(5+2*t)))/t + (-1-n)/2) where t=sqrt(5). - Colin Barker, Feb 09 2017