cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213048 Number of preferential arrangements of n labeled elements with repetitions allowed.

Original entry on oeis.org

1, 1, 5, 31, 229, 1981, 19775, 224589, 2864901, 40591255, 632760105, 10765616885, 198543617119, 3945765358653, 84070841065937, 1911864488674531, 46222718892288645, 1183919151676806177, 32025836905529003471, 912372909851608715945, 27304698509111141688969
Offset: 0

Views

Author

Thomas Wieder, Jun 03 2012

Keywords

Examples

			For n=2 the a(2) = 5 solutions are (1,2), (1|2), (2|1), (1|1), (2|2).
		

Crossrefs

Cf. A000670.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, add(binomial(n+k-1, k)*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n+k-1, k] a[n-k], {k, 1, n}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 21 2020 *)

Formula

a(n) = Sum_{k=1..n} C(n+k-1,k)*a(n-k) for n>0, a(0) = 1.
a(n) = Sum_c(n) C(n+k1-1,k1) C(n-k1+k2-1,k2) C(n-k1-k2+k3-1,k3) ..., where Sum_c(n) denotes the sum over all compositions (ordered partitions) of n = k1 + k2 + ... .
a(n) ~ c * n! * n^(log(2)) / (log(2))^n, where c = 0.9387523255426859866752735339706007723805611... . - Vaclav Kotesovec, May 03 2015