cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213056 Expansion of chi(x) * f(x^3)^3 in powers of x where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 0, 4, 4, 1, 4, 4, 5, 0, 0, 8, 4, 4, 4, 8, 9, 4, 0, 4, 12, 1, 4, 8, 8, 4, 0, 8, 8, 4, 8, 16, 8, 5, 0, 12, 12, 0, 8, 12, 13, 0, 0, 8, 8, 8, 12, 8, 16, 4, 0, 16, 12, 4, 4, 20, 13, 4, 0, 16, 20, 8, 8, 8, 8, 9, 0, 12, 16, 4, 12, 12, 16, 0, 0, 16, 20, 4, 8
Offset: 0

Views

Author

Michael Somos, Jun 03 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 4*x^3 + 4*x^4 + x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 8*x^11 + 4*x^12 + ...
G.f. = q + q^4 + 4*q^10 + 4*q^13 + q^16 + 4*q^19 + 4*q^22 + 5*q^25 + 8*q^34 + ...
		

Programs

  • Mathematica
    CoefficientList[QPochhammer[q^2]^2*QPochhammer[-q^3]^3 / (QPochhammer[q] * QPochhammer[q^4]) + O[q]^80, q] (* Jean-François Alcover, Nov 05 2015 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/3)* eta[q^2]^2*eta[q^6]^9/(eta[q]*eta[q^3]^3*eta[q^4]*eta[q^12]^3), {q, 0, 50}], q] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^9 / (eta(x + A) * eta(x^3 + A)^3 * eta(x^4 + A) * eta(x^12 + A)^3) ,n))}

Formula

Expansion of q^(-1/3) * eta(q^2)^2 * eta(q^6)^9 / (eta(q) * eta(q^3)^3 * eta(q^4) * eta(q^12)^3) in powers of q.
Expansion of q^(-1/9) times theta series of cubic lattice with respect to point [0, 0, 1/3] in powers of q^(1/3).
Euler transform of period 12 sequence [ 1, -1, 4, 0, 1, -7, 1, 0, 4, -1, 1, -3, ...].
G.f.: Product_{k>0} (1 - (-x)^(3*k))^3 * (1 + x^(2*k-1)).
a(4*n + 1) = a(n). a(8*n + 2) = 0.