cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213068 Expansion of e.g.f. arcsinh(sech(x)^2), even powers only.

Original entry on oeis.org

0, -1, 5, -31, -85, 4919, 1248125, -158970631, 2094813635, 2311829506319, -210731879464555, -109642894428121231, 37051431528058442555, 4409666909576599299719, -6492299377660512249146035, 648925901618982079024132169
Offset: 0

Views

Author

Olivier Gérard, Jun 04 2012

Keywords

Comments

This function is even, with constant term arcsinh(1) = 0.881373587019543...

Examples

			(arcsinh(sech(x)^2) - arcsinh(1))/sqrt(2) = -x^2/2 + 5*x^4/4! - 31*x^6/6! - 85*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    Part[#, Range[1, Length[#], 2]] &@(Array[#! &, Length[#], 0]*#) &@ CoefficientList[Series[(ArcSinh[Sech[x]^2] - ArcSinh[1])/Sqrt[2], {x, 0, 30}], x] // ExpandAll

Formula

E.g.f.: (arcsinh(sech(x)^2) - arcsinh(1))/sqrt(2).

A213069 Expansion of e.g.f. arcsinh(cos(x)*sech(x)), even powers only.

Original entry on oeis.org

0, -1, 3, -1, -77, -13921, 791043, 23892959, -3518362637, -801110007361, 149920222346883, 24069808471917119, -7334638751184472397, -2673575321959933341601, 1059696929013386749787523, 413637485668406346391368479
Offset: 0

Views

Author

Olivier Gérard, Jun 04 2012

Keywords

Comments

This function is even, with constant term arcsinh(1) = 0.881373587019543...

Examples

			(arcsinh(cos(x)*sech(x))-arcsinh(1))/sqrt(2) = -x^2/2 + 3*x^4/4! - x^6/6! - 77*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    Part[#, Range[1, Length[#], 2]] &@(Array[#! &, Length[#], 0]*#) &@ CoefficientList[Series[(ArcSinh[Cos[x]*Sech[x]] - ArcSinh[1])/Sqrt[2], {x, 0, 30}], x] // ExpandAll
    With[{nn=30},Take[CoefficientList[Series[(ArcSinh[Cos[x]Sech[x]]-ArcSinh[ 1])/ Sqrt[2],{x,0,nn}],x]Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Mar 24 2013 *)

Formula

E.g.f.: (arcsinh(cos(x)*sech(x))-arcsinh(1))/sqrt(2).
Showing 1-2 of 2 results.