A213067
E.g.f.: arctan(cos(x)^2) - Pi/4.
Original entry on oeis.org
0, -1, -2, 44, 1408, -18016, -5095232, -139605376, 56961507328, 8306292414464, -1178066937638912, -640316054325354496, -7088737339266301952, 76268423227563817631744, 18895160315230467816030208, -12297988177132848140606242816
Offset: 0
arctan(cos(x)^2) - Pi/4 = 0 - x^2/2 - 2*x^4/4! + 44*x^6/6! + 1408*x^8/8! + ...
-
Part[#, Range[1, Length[#], 2]] &@(Array[#! &, Length[#], 0]*#) &@
CoefficientList[Series[ArcTan[Cos[x]^2] - Pi/4, {x, 0, 30}], x] // ExpandAll
With[{nn=30},Take[CoefficientList[Series[ArcTan[Cos[x]^2]-Pi/4,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Feb 24 2022 *)
A213069
Expansion of e.g.f. arcsinh(cos(x)*sech(x)), even powers only.
Original entry on oeis.org
0, -1, 3, -1, -77, -13921, 791043, 23892959, -3518362637, -801110007361, 149920222346883, 24069808471917119, -7334638751184472397, -2673575321959933341601, 1059696929013386749787523, 413637485668406346391368479
Offset: 0
(arcsinh(cos(x)*sech(x))-arcsinh(1))/sqrt(2) = -x^2/2 + 3*x^4/4! - x^6/6! - 77*x^8/8! + ...
-
Part[#, Range[1, Length[#], 2]] &@(Array[#! &, Length[#], 0]*#) &@ CoefficientList[Series[(ArcSinh[Cos[x]*Sech[x]] - ArcSinh[1])/Sqrt[2], {x, 0, 30}], x] // ExpandAll
With[{nn=30},Take[CoefficientList[Series[(ArcSinh[Cos[x]Sech[x]]-ArcSinh[ 1])/ Sqrt[2],{x,0,nn}],x]Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Mar 24 2013 *)
A014297
a(n) = n! * C(n+2, 2) * 2^(n+1).
Original entry on oeis.org
2, 12, 96, 960, 11520, 161280, 2580480, 46448640, 928972800, 20437401600, 490497638400, 12752938598400, 357082280755200, 10712468422656000, 342798989524992000, 11655165643849728000, 419585963178590208000, 15944266600786427904000, 637770664031457116160000
Offset: 0
-
List([0..20], n-> 2^n*Factorial(n+2)); # G. C. Greubel, May 05 2019
-
[2^n*Factorial(n+2): n in [0..20]]; // G. C. Greubel, May 05 2019
-
seq(count(Permutation(n+1))*count(Composition(n)),n=1..17); # Zerinvary Lajos, Oct 16 2006
-
Drop[CoefficientList[Series[(1-x)^2/(1-2x), {x, 0, 20}], x]* Table[n!, {n, 0, 20}], 2] (* Geoffrey Critzer, Mar 03 2010 *)
Part[#, Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0]*#)&@CoefficientList[Series[2/(1 - 2*x)^3, {x, 0, 20}], x]// ExpandAll (* Vincenzo Librandi, Jan 04 2013 - after Olivier Gérard in A213068 *)
Table[n!Binomial[n+2,2]2^(n+1),{n,0,30}] (* Harvey P. Dale, Dec 27 2022 *)
-
a(n) = (n+2)!*2^n; \\ Joerg Arndt, May 05 2019
-
[2^n*factorial(n+2) for n in (0..20)] # G. C. Greubel, May 05 2019
A052564
Expansion of e.g.f. x*(1-x)/(1-2*x).
Original entry on oeis.org
0, 1, 2, 12, 96, 960, 11520, 161280, 2580480, 46448640, 928972800, 20437401600, 490497638400, 12752938598400, 357082280755200, 10712468422656000, 342798989524992000, 11655165643849728000, 419585963178590208000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
[n le 1 select n else 2^(n-2)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 05 2019
-
spec := [S,{S=Prod(Z,Sequence(Prod(Z,Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
a = x/(1 - x); CoefficientList[Series[a/(1 - a^2), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Geoffrey Critzer, Mar 05 2010 *)
Part[#,Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0]*#)&@CoefficientList[Series[x*(1-x)/(1-2x), {x, 0, 20}], x]// ExpandAll (* Vincenzo Librandi, Jan 04 2013 - after Olivier Gérard in A213068 *)
With[{nn=20},CoefficientList[Series[x (1-x)/(1-2x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 18 2025 *)
-
{a(n) = if(n<=1, n, 2^(n-2)*n!)}; \\ G. C. Greubel, May 05 2019
-
my(x='x+O('x^20)); concat([0], Vec(serlaplace(x*(1-x)/(1-2*x)))) \\ Felix Fröhlich, May 05 2019
-
[0,1]+[2^(n-2)*factorial(n) for n in (2..20)] # G. C. Greubel, May 05 2019
Showing 1-4 of 4 results.
Comments